125 research outputs found

    Contributions from DMS and ship emissions to CCN observed over the summertime North Pacific

    Get PDF
    Measurements of cloud condensation nuclei (CCN) made over the North Pacific Ocean in July 2002 are analysed with concurrent measurements of aerosol number, mass and composition. Overall the CCN are controlled by the sulphate, including one case that suggests particle nucleation and growth resulting from dimethyl sulphide oxidation that enhanced CCN concentrations. Hourly CCN concentrations are correlated with concentrations of sulphate plus methanesulphonic acid (MSA) over the entire study period (<i>r</i><sup>2</sup>=0.43 and 0.52 for supersaturations of 0.34% and 0.19%, respectively), and are not well correlated with other organics (<i>r</i><sup>2</sup><0.2). One case study reveals elevated mass and number concentrations of ultrafine and fine organic particles due to regional ship emissions, identified through quadrupole aerosol mass spectrometer (Q-AMS) measurements, during which organic mass concentrations are correlated with CCN values (<i>r</i><sup>2</sup>=0.39 and 0.46 for supersaturations of 0.19% and 0.34%, respectively). The evolution of the time series and mass distributions of organics, sulphate and MSA over this timeframe indicate that the regional distribution of small, diffuse ship-sourced organic particles act as condensation sites for sulphur species, resulting in a subsequent increase in number concentrations of CCN. We conclude that, where present, direct emissions of anthropogenic organic particles may exert a strong control on marine CCN concentrations once diffused into the marine atmosphere, by acting as condensation sites for biogenic and anthropogenic sulphur species

    Atmospheric mercury speciation and mercury in snow over time at Alert, Canada

    Get PDF
    Ten years of atmospheric mercury speciation data and 14 years of mercury in snow data from Alert, Nunavut, Canada, are examined. The speciation data, collected from 2002 to 2011, includes gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM). During the winter-spring period of atmospheric mercury depletion events (AMDEs), when GEM is close to being completely depleted from the air, the concentration of both PHg and RGM rise significantly. During this period, the median concentrations for PHg is 28.2 pgm<sup>−3</sup> and RGM is 23.9 pgm<sup>−3</sup>, from March to June, in comparison to the annual median concentrations of 11.3 and 3.2 pgm<sup>−3</sup> for PHg and RGM, respectively. In each of the ten years of sampling, the concentration of PHg increases steadily from January through March and is higher than the concentration of RGM. This pattern begins to change in April when the levels of PHg peak and RGM begin to increase. In May, the high PHg and low RGM concentration regime observed in the early spring undergoes a transition to a regime with higher RGM and much lower PHg concentrations. The higher RGM concentration continues into June. The transition is driven by the atmospheric conditions of air temperature and particle availability. Firstly, a high ratio of the concentrations of PHg to RGM is reported at low temperatures which suggests that oxidized gaseous mercury partitions to available particles to form PHg. Prior to the transition, the median air temperature is −24.8 °C and after the transition the median air temperature is −5.8 °C. Secondly, the high PHg concentrations occur in the spring when high particle concentrations are present. The high particle concentrations are principally due to Arctic haze and sea salts. In the snow, the concentrations of mercury peak in May for all years. Springtime deposition of total mercury to the snow at Alert peaks in May when atmospheric conditions favour higher levels of RGM. Therefore, the conditions in the atmosphere directly impact when the highest amount of mercury will be deposited to the snow during the Arctic spring

    The effect of organic compounds on the growth rate of cloud droplets in marine and forest settings

    No full text
    International audienceOrganic matter represents an important fraction of the fine particle aerosol, yet our knowledge of the roles of organics in the activation of aerosol particles into cloud droplets is poor. A cloud condensation nucleus (CCN) counter is used to examine the relative growth rates of cloud droplets for case studies from field measurements on the North Pacific Ocean and in a coniferous forest. A model of the condensational growth of water droplets, on particles dissolving according to their solubility in water, is used to simulate the initial scattering of the droplets as they grow in the CCN counter. Simulations of the growth rates of fine particles sampled in the marine boundary layer of the North Pacific Ocean indicate that the main influence of the marine organic material on the water uptake rate is from its effect on the size distribution of the sulphate. Simulations of the observations of water uptake on biogenic organic aerosol particles sampled in a coniferous forest indicate an impact of the organic on the water uptake rates, but one that is still smaller than that of pure sulphate. The solubility of the organic becomes an important factor in determining the water uptake as the organic mass increases relative to sulphate. The values of the organic component of the hygroscopicity parameter ? that describes the CCN activity were found to be negligible for the marine particles and 0.02?0.05 for the forest particles

    Trans-Pacific dust events observed at Whistler, British Columbia during INTEX-B

    Get PDF
    International audienceThe meteorology and physico-chemical characteristics of aerosol associated with two new cases of long range dust transport affecting western Canada during spring 2006 are described. Each event showed enhancements of both sulfate aerosol and crustal material of Asian origin. However, the events were of quite different character and demonstrate the highly variable nature of such events. The April event was a significant dust event with moderate sulfate enhancement while the May event was a weak dust event with very significant sulfate enhancement. The latter event was interesting in the sense that it was of short duration and was quickly followed by significant enhancement of organic material likely of regional origin. Comparison of these two events with other documented cases extending back to 1993, suggests that all dust events show coincident enhancements of sulfate and crustal aerosol. However, events vary across a wide continuum based on the magnitude of aerosol enhancements and their sulfate to calcium ratios. At one extreme, events are dominated by highly significant crustal enhancements (e.g. the well-documented 1998 and 2001 "dust" events) while at the other are events with some dust transport, but where sulfate enhancements are of very high magnitude (e.g. the 1993 event at Crater Lake and the 15 May 2006 event at Whistler). Other events represent a "mix". It is likely that this variability is a function of the comparative strengths of the dust and anthropogenic SO2 sources, the transport pathway and in particular the extent to which dust is transported across industrial SO2 sources, and finally, meteorological and chemical processes

    Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada

    Get PDF
    We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April&amp;ndash;May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m&lt;sup&gt;3&lt;/sup&gt;. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem) and use it to interpret the observations. Aerosol Optical Depth (AOD) retrieved from two satellite instruments (MISR and MODIS) for 2000&amp;ndash;2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800&amp;ndash;600 hPa), with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500&amp;ndash;900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72&amp;ndash;85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m&lt;sup&gt;3&lt;/sup&gt; (~30%) and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by 0.32 μg/m&lt;sup&gt;3&lt;/sup&gt; per 10% increase in the simulated fraction of Asian sulfate, and suggest current East Asian emissions episodically degrade local air quality by more than 1.5 μg/m&lt;sup&gt;3&lt;/sup&gt;

    Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring

    Get PDF
    We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B) in spring 2006 using a global chemical transport model (GEOS-Chem) to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO&lt;sub&gt;2&lt;/sub&gt; columns to provide timely estimates of trends in NO&lt;sub&gt;x&lt;/sub&gt; emissions. NO&lt;sub&gt;x&lt;/sub&gt; emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NO&lt;sub&gt;x&lt;/sub&gt; emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30&amp;deg; N–60&amp;deg; N) tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs). A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NO&lt;sub&gt;x&lt;/sub&gt; from regions of low ozone production efficiency (OPE) and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is greatest in the eastern Pacific; commonly occurring transport patterns advect this ozone northeastward into Canada. Transport events observed by the aircraft confirm that polluted airmasses were advected in this way

    Identifying the sources driving observed PM2.5 temporal variability over Halifax, Nova Scotia, during BORTAS-B

    Get PDF
    The source attribution of observed variability of total PM<sub>2.5</sub> concentrations over Halifax, Nova Scotia was investigated between 11 July–26 August 2011 using measurements of PM<sub>2.5</sub> mass and PM<sub>2.5</sub> chemical composition (black carbon, organic matter, anions, cations and 33 elements). This was part of the BORTAS-B (quantifying the impact of BOReal forest fires on Tropospheric oxidants using aircraft and satellites) experiment, which investigated the atmospheric chemistry and transport of seasonal boreal wild fire emissions over eastern Canada in 2011. The US EPA Positive Matrix Factorization (PMF) receptor model was used to determine the average mass (percentage) source contribution over the 45 days, which was estimated to be: Long-Range Transport (LRT) Pollution 1.75 μg m<sup>−3</sup> (47%), LRT Pollution Marine Mixture 1.0 μg m<sup>−3</sup> (27.9%), Vehicles 0.49 μg m<sup>−3</sup> (13.2%), Fugitive Dust 0.23 μg m<sup>−3</sup> (6.3%), Ship Emissions 0.13 μg m<sup>−3</sup> (3.4%) and Refinery 0.081 μg m<sup>−3</sup> (2.2%). The PMF model describes 87% of the observed variability in total PM<sub>2.5</sub> mass (bias = 0.17 and RSME = 1.5 μg m<sup>−3</sup>). The factor identifications are based on chemical markers, and they are supported by air mass back trajectory analysis and local wind direction. Biomass burning plumes, found by other surface and aircraft measurements, were not significant enough to be identified in this analysis. This paper presents the results of the PMF receptor modelling, providing valuable insight into the local and upwind sources impacting surface PM<sub>2.5</sub> in Halifax during the BORTAS-B mission

    Particle formation and growth at five rural and urban sites

    Get PDF
    Ultrafine particle (UFP) number and size distributions were simultaneously measured at five urban and rural sites during the summer of 2007 in Ontario, Canada as part of the Border Air Quality and Meteorology Study (BAQS-Met 2007). Particle formation and growth events at these five sites were classified based on their strength and persistence as well as the variation in geometric mean diameter. Regional nucleation and growth events and local short-lived strong nucleation events were frequently observed at the near-border rural sites, upwind of industrial sources. Surprisingly, the particle number concentrations at one of these sites were higher than the concentrations at a downtown site in a major city, despite its high traffic density. Regional nucleation and growth events were favored during intense solar irradiance and in less polluted cooler drier air. The most distinctive regional particle nucleation and growth event during the campaign was observed simultaneously at all five sites, which were up to 350 km apart. Although the ultrafine particle concentrations and size distributions generally were spatially heterogeneous across the region, a more uniform spatial distribution of UFP across the five areas was observed during this regional nucleation event. Thus, nucleation events can cover large regions, contributing to the burden of UFP in cities and potentially to the associated health impacts on urban populations. Local short-lived nucleation events at the three near-border sites during this summer three-week campaign were associated with high SO&lt;sub&gt;2&lt;/sub&gt;, which likely originated from US and Canadian industrial sources. Hence, particle formation in southwestern Ontario appears to often be related to anthropogenic gaseous emissions but biogenic emissions at times also contribute. Longer-term studies are needed to help resolve the relative contributions of anthropogenic and biogenic emissions to nucleation and growth in this region

    Emission fluxes and atmospheric degradation of monoterpenes above a boreal forest: field measurements and modelling

    Get PDF
    The contribution of monoterpenes to aerosol formation processes within and above forests is not well understood. This is also true for the particle formation events observed during the BIOFOR campaigns in Hyytiälä, Finland. Therefore, the diurnal variation of the concentrations of several biogenic volatile organic compounds (BVOCs) and selected oxidation products in the gas and particle phase were measured on selected days during the campaigns in Hyytiälä, Finland. α-pinene and Δ3-carene were found to represent the most important monoterpenes above the boreal forest. A clear vertical gradient of their concentrations was observed together with a change of the relative monoterpene composition with height. Based on concentration profile measurements of monoterpenes, their fluxes above the forest canopy were calculated using the gradient approach. Most of the time, the BVOC fluxes show a clear diurnal variation with a maximum around noon. The highest fluxes were observed for α-pinene with values up to 20 ng m−2 s−1 in summer time and almost 100 ng m−2 s−1 during the spring campaign. Furthermore, the main oxidation products from α-pinene, pinonaldehyde, and from β-pinene, nopinone, were detected in the atmosphere above the forest. In addition to these more volatile oxidation products, pinic and pinonic acid were identified in the particle phase in a concentration range between 1 and 4 ng m−3. Beside these direct measurement of known oxidation products, the chemical sink term in the flux calculations was used to estimate the amount of product formation of the major terpenes (α-pinene, β-pinene, Δ3-carene). A production rate of very low volatile oxidation products (e.g., multifunctional carboxylic) from ·OH- and O3-reaction of monoterpenes of about 1.3·104 molecules cm−3 s−1 was estimated for daylight conditions during summer time. Additionally, model calculations with the one-dimensional multilayer model CACHE were carried out to investigate the diurnal course of BVOC fluxes and chemical degradation of terpenes
    • …
    corecore