98 research outputs found

    Contributions from DMS and ship emissions to CCN observed over the summertime North Pacific

    Get PDF
    Measurements of cloud condensation nuclei (CCN) made over the North Pacific Ocean in July 2002 are analysed with concurrent measurements of aerosol number, mass and composition. Overall the CCN are controlled by the sulphate, including one case that suggests particle nucleation and growth resulting from dimethyl sulphide oxidation that enhanced CCN concentrations. Hourly CCN concentrations are correlated with concentrations of sulphate plus methanesulphonic acid (MSA) over the entire study period (<i>r</i><sup>2</sup>=0.43 and 0.52 for supersaturations of 0.34% and 0.19%, respectively), and are not well correlated with other organics (<i>r</i><sup>2</sup><0.2). One case study reveals elevated mass and number concentrations of ultrafine and fine organic particles due to regional ship emissions, identified through quadrupole aerosol mass spectrometer (Q-AMS) measurements, during which organic mass concentrations are correlated with CCN values (<i>r</i><sup>2</sup>=0.39 and 0.46 for supersaturations of 0.19% and 0.34%, respectively). The evolution of the time series and mass distributions of organics, sulphate and MSA over this timeframe indicate that the regional distribution of small, diffuse ship-sourced organic particles act as condensation sites for sulphur species, resulting in a subsequent increase in number concentrations of CCN. We conclude that, where present, direct emissions of anthropogenic organic particles may exert a strong control on marine CCN concentrations once diffused into the marine atmosphere, by acting as condensation sites for biogenic and anthropogenic sulphur species

    Trans-Pacific dust events observed at Whistler, British Columbia during INTEX-B

    Get PDF
    International audienceThe meteorology and physico-chemical characteristics of aerosol associated with two new cases of long range dust transport affecting western Canada during spring 2006 are described. Each event showed enhancements of both sulfate aerosol and crustal material of Asian origin. However, the events were of quite different character and demonstrate the highly variable nature of such events. The April event was a significant dust event with moderate sulfate enhancement while the May event was a weak dust event with very significant sulfate enhancement. The latter event was interesting in the sense that it was of short duration and was quickly followed by significant enhancement of organic material likely of regional origin. Comparison of these two events with other documented cases extending back to 1993, suggests that all dust events show coincident enhancements of sulfate and crustal aerosol. However, events vary across a wide continuum based on the magnitude of aerosol enhancements and their sulfate to calcium ratios. At one extreme, events are dominated by highly significant crustal enhancements (e.g. the well-documented 1998 and 2001 "dust" events) while at the other are events with some dust transport, but where sulfate enhancements are of very high magnitude (e.g. the 1993 event at Crater Lake and the 15 May 2006 event at Whistler). Other events represent a "mix". It is likely that this variability is a function of the comparative strengths of the dust and anthropogenic SO2 sources, the transport pathway and in particular the extent to which dust is transported across industrial SO2 sources, and finally, meteorological and chemical processes

    Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada

    Get PDF
    We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m<sup>3</sup>. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem) and use it to interpret the observations. Aerosol Optical Depth (AOD) retrieved from two satellite instruments (MISR and MODIS) for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa), with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500–900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72–85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m<sup>3</sup> (~30%) and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by 0.32 μg/m<sup>3</sup> per 10% increase in the simulated fraction of Asian sulfate, and suggest current East Asian emissions episodically degrade local air quality by more than 1.5 μg/m<sup>3</sup>

    Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring

    Get PDF
    We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B) in spring 2006 using a global chemical transport model (GEOS-Chem) to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO<sub>2</sub> columns to provide timely estimates of trends in NO<sub>x</sub> emissions. NO<sub>x</sub> emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NO<sub>x</sub> emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30° N–60° N) tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs). A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NO<sub>x</sub> from regions of low ozone production efficiency (OPE) and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is greatest in the eastern Pacific; commonly occurring transport patterns advect this ozone northeastward into Canada. Transport events observed by the aircraft confirm that polluted airmasses were advected in this way

    Identifying the sources driving observed PM2.5 temporal variability over Halifax, Nova Scotia, during BORTAS-B

    Get PDF
    The source attribution of observed variability of total PM<sub>2.5</sub> concentrations over Halifax, Nova Scotia was investigated between 11 July–26 August 2011 using measurements of PM<sub>2.5</sub> mass and PM<sub>2.5</sub> chemical composition (black carbon, organic matter, anions, cations and 33 elements). This was part of the BORTAS-B (quantifying the impact of BOReal forest fires on Tropospheric oxidants using aircraft and satellites) experiment, which investigated the atmospheric chemistry and transport of seasonal boreal wild fire emissions over eastern Canada in 2011. The US EPA Positive Matrix Factorization (PMF) receptor model was used to determine the average mass (percentage) source contribution over the 45 days, which was estimated to be: Long-Range Transport (LRT) Pollution 1.75 μg m<sup>−3</sup> (47%), LRT Pollution Marine Mixture 1.0 μg m<sup>−3</sup> (27.9%), Vehicles 0.49 μg m<sup>−3</sup> (13.2%), Fugitive Dust 0.23 μg m<sup>−3</sup> (6.3%), Ship Emissions 0.13 μg m<sup>−3</sup> (3.4%) and Refinery 0.081 μg m<sup>−3</sup> (2.2%). The PMF model describes 87% of the observed variability in total PM<sub>2.5</sub> mass (bias = 0.17 and RSME = 1.5 μg m<sup>−3</sup>). The factor identifications are based on chemical markers, and they are supported by air mass back trajectory analysis and local wind direction. Biomass burning plumes, found by other surface and aircraft measurements, were not significant enough to be identified in this analysis. This paper presents the results of the PMF receptor modelling, providing valuable insight into the local and upwind sources impacting surface PM<sub>2.5</sub> in Halifax during the BORTAS-B mission

    Emission fluxes and atmospheric degradation of monoterpenes above a boreal forest: field measurements and modelling

    Get PDF
    The contribution of monoterpenes to aerosol formation processes within and above forests is not well understood. This is also true for the particle formation events observed during the BIOFOR campaigns in Hyytiälä, Finland. Therefore, the diurnal variation of the concentrations of several biogenic volatile organic compounds (BVOCs) and selected oxidation products in the gas and particle phase were measured on selected days during the campaigns in Hyytiälä, Finland. α-pinene and Δ3-carene were found to represent the most important monoterpenes above the boreal forest. A clear vertical gradient of their concentrations was observed together with a change of the relative monoterpene composition with height. Based on concentration profile measurements of monoterpenes, their fluxes above the forest canopy were calculated using the gradient approach. Most of the time, the BVOC fluxes show a clear diurnal variation with a maximum around noon. The highest fluxes were observed for α-pinene with values up to 20 ng m−2 s−1 in summer time and almost 100 ng m−2 s−1 during the spring campaign. Furthermore, the main oxidation products from α-pinene, pinonaldehyde, and from β-pinene, nopinone, were detected in the atmosphere above the forest. In addition to these more volatile oxidation products, pinic and pinonic acid were identified in the particle phase in a concentration range between 1 and 4 ng m−3. Beside these direct measurement of known oxidation products, the chemical sink term in the flux calculations was used to estimate the amount of product formation of the major terpenes (α-pinene, β-pinene, Δ3-carene). A production rate of very low volatile oxidation products (e.g., multifunctional carboxylic) from ·OH- and O3-reaction of monoterpenes of about 1.3·104 molecules cm−3 s−1 was estimated for daylight conditions during summer time. Additionally, model calculations with the one-dimensional multilayer model CACHE were carried out to investigate the diurnal course of BVOC fluxes and chemical degradation of terpenes

    Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley

    Get PDF
    The Whistler Aerosol and Cloud Study (WACS 2010), included intensive measurements of trace gases and particles at two sites on Whistler Mountain. Between 6–11 July 2010 there was a sustained high-pressure system over the region with cloud-free conditions and the highest temperatures of the study. During this period, the organic aerosol concentrations rose from &lt;1 μg m&lt;sup&gt;−3&lt;/sup&gt; to &amp;sim;6 μg m&lt;sup&gt;−3&lt;/sup&gt;. Precursor gas and aerosol composition measurements show that these organics were almost entirely of secondary biogenic nature. Throughout 6–11 July, the anthropogenic influence was minimal with sulfate concentrations &lt;0.2 μg m&lt;sup&gt;−3&lt;/sup&gt; and SO&lt;sub&gt;2&lt;/sub&gt; mixing ratios &amp;approx; 0.05–0.1 ppbv. Thus, this case provides excellent conditions to probe the role of biogenic secondary organic aerosol in aerosol microphysics. Although SO&lt;sub&gt;2&lt;/sub&gt; mixing ratios were relatively low, box-model simulations show that nucleation and growth may be modeled accurately if &lt;i&gt;J&lt;/i&gt;&lt;sub&gt;nuc&lt;/sub&gt; = 3 × 10&lt;sup&gt;&amp;minus;7&lt;/sup&gt;[H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;] and the organics are treated as effectively non-volatile. Due to the low condensation sink and the fast condensation rate of organics, the nucleated particles grew rapidly (2–5 nm h&lt;sup&gt;&amp;minus;1&lt;/sup&gt;) with a 10–25% probability of growing to CCN sizes (100 nm) in the first two days as opposed to being scavenged by coagulation with larger particles. The nucleated particles were observed to grow to &amp;sim;200 nm after three days. Comparisons of size-distribution with CCN data show that particle hygroscopicity (&amp;kappa;) was &amp;sim;0.1 for particles larger 150 nm, but for smaller particles near 100 nm the κ value decreased near midway through the period from 0.17 to less than 0.06. In this environment of little anthropogenic influence and low SO&lt;sub&gt;2&lt;/sub&gt;, the rapid growth rates of the regionally nucleated particles – due to condensation of biogenic SOA – results in an unusually high efficiency of conversion of the nucleated particles to CCN. Consequently, despite the low SO&lt;sub&gt;2&lt;/sub&gt;, nucleation/growth appear to be the dominant source of particle number
    corecore