29 research outputs found

    Assessing the Causal Impact of Chinese Aid on Vegetative Land Cover in Burundi and Rwanda Under Conditions of Spatial Imprecision

    Get PDF
    There has been considerable debate regarding the efficacy of international aid in meeting the dual goals of human development and environmental sustainability. Many donors have sought to engage with this challenge by introducing environmental safeguard and monitoring initiatives; however, evidence on the success of these interventions is limited. Evaluating aid is a particular challenge in the case of donors that do not disclose information on the nature, geographic location, or extents of their interventions. In such cases, new methods that extract and geoparse data on the activities of opaque donors through the manual interpretation of thousands of news and other articles allow us to investigate the impacts of these activities. However, residual spatial uncertainty in these data remains a potential source of bias. In this article, we apply and discuss a Geographic Simulation and Extrapolation (GeoSIMEX) approach to mitigate the spatial imprecision inherent in geoparsed data. In conjunction with GeoSIMEX, we test and contrast multiple approaches to reducing the imprecision of aid, including high-assumption cases in which other covariates (i.e., nighttime lights) are leveraged to allocate aid. In our application, we find that methods which do not account for spatial imprecision find statistically significant relationships between Chinese aid and vegetation change; after accounting for spatial uncertainty, findings are similar for Rwanda and inconclusive for Burundi

    The scientific study of inspiration in the creative process: challenges and opportunities

    Get PDF
    Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale (IS), which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect) by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than perspiration (effort), and we review empirical evidence that inspiration and effort both play important- but different-roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural under pinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas fire the soul, such that individuals are compelled to transform ideas into products and solutions that may benefit society

    A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series

    Get PDF
    Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features

    Optical Precursor Behavior

    No full text
    Controlling and understanding the propagation of optical pulses through dispersive media forms the basis for optical communication, medical imaging, and other modern technological advances. Integral to this control and understanding is the ability to describe the transients which occur immediately after the onset of a signal. This thesis examines the transients of such a system when a unit step function is applied. The electromagnetic field is described by an integral resulting from Maxwell’s Equations. It was previously believed that optical precursors, a specific transient effect, existed only for only a few optical cycles and contributed only small magnitudes to the field. The main results of this thesis show that the transients arising from this integral are entirely precursors and that they may exist on longer time scales and contribute larger magnitudes to the field. The experimental detection of precursors has previously been recognized only through success comparison to the transient field resulting from an application of the method of steepest descent to that field integral. For any parameter regime where steepest descents may be applied, this work gives iterative methods to determine saddle points which are both more accurate than the accepted results and to extend into regimes where the current theory has failed. Furthermore, asymptotic formulae have been derived for regions where previous attempts at steepest descent have failed. Theory is also presented which evaluates the applicability of steepest descents in the represention of precursor behavior for any set of parameters. Lastly, the existence of other theoretical models for precursor behavior who may operate beyond the reach of steepest descent is validated through successful comparisons of the transient prediction of those methods to the steepest descent based results of this work.Dissertatio

    <i>In vitro</i> screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays

    No full text
    <p>Nanoparticles (NPs) may translocate to the brain following inhalation or oral exposures, yet higher throughput methods to screen NPs for potential neurotoxicity are lacking. The present study examined effects of 5 CeO<sub>2</sub> (5– 1288 nm), and 4 TiO<sub>2</sub> (6–142 nm) NPs and microparticles (MP) on network function in primary cultures of rat cortex on 12 well microelectrode array (MEA) plates. Particles were without cytotoxicity at concentrations ≤50 µg/ml. After recording 1 h of baseline activity prior to particle (3–50 µg/ml) exposure, changes in the total number of spikes (TS) and # of active electrodes (#AEs) were assessed 1, 24, and 48 h later. Following the 48 h recording, the response to a challenge with the GABA<sub>A</sub> antagonist bicuculline (BIC; 25 µM) was assessed. In all, particles effects were subtle, but 69 nm CeO<sub>2</sub> and 25 nm TiO<sub>2</sub> NPs caused concentration-related decreases in TS following 1 h exposure. At 48 h, 5 and 69 nm CeO<sub>2</sub> and 25 and 31 nm TiO<sub>2</sub> decreased #AE, while the two MPs increased #AEs. Following BIC, only 31 nm TiO<sub>2</sub> produced concentration-related decreases in #AEs, while 1288 nm CeO<sub>2</sub> caused concentration-related increases in both TS and #AE. The results indicate that some metal oxide particles cause subtle concentration-related changes in spontaneous and/or GABA<sub>A</sub> receptor-mediated neuronal activity <i>in vitro</i> at times when cytotoxicity is absent, and that MEAs can be used to screen and prioritize nanoparticles for neurotoxicity hazard.</p

    Parameter choices do not qualitatively change the biological interpretation of our information entropy measure.

    No full text
    <p>Cohen’s d statistic [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0168342#pone.0168342.ref029" target="_blank">29</a>] comparing distributions of entropy values for cellular calcium activity of (a) stage 14 and stage 18 <i>Xenopus laevis</i> embryos, (b) stage 18 and stage 22 <i>Xenopus laevis</i> embryos, (c) stage 14 and stage 22 <i>Xenopus laevis</i> embryos, and (d) mature retrotrapezoid nucleus neurons from embryonic mice in pH 7.4 solution vs. pH 7.2 solution (data in (d) obtained from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0168342#pone.0168342.ref015" target="_blank">15</a>]). At large values of <i>n</i> and <i>k</i>, a sign change in d value occurs which is a technical artifact arising from there being more entries in the transition matrix than can be filled by data from our time series. The numerical values of d which generated this figure can be found in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0168342#pone.0168342.s007" target="_blank">S2 Table</a>.</p

    Separation between calcium activity distributions from two biologically distinct populations as a function of sample size.

    No full text
    <p>The p-value obtained from a two-sample Kolmogorov-Smirnov test between distributions of calcium activity traces processed by a given analysis method from stage 14 Xenopus neural progenitors and stage 22 Xenopus neural progenitors is used as a measure of separation between the two biologically distinct populations. A smaller p-value indicates a more confident separation between the distributions. Each point represents mean + SD of 5,000 comparisons between samples of a given size taken with replacement from the two distributions. Markovian Entropy is calculated with <i>n</i> = 2 and <i>k =</i> 1. A randomized control is included that compares two samples which both come from the stage 14 Xenopus population. The Cohen’s d values associated with this data can be found in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0168342#pone.0168342.s003" target="_blank">S3 Fig</a>.</p
    corecore