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A B S T R A C T

There has been considerable debate regarding the efficacy of international aid in meeting the dual goals of
human development and environmental sustainability. Many donors have sought to engage with this challenge
by introducing environmental safeguard and monitoring initiatives; however, evidence on the success of these
interventions is limited. Evaluating aid is a particular challenge in the case of donors that do not disclose in-
formation on the nature, geographic location, or extents of their interventions. In such cases, new methods that
extract and geoparse data on the activities of opaque donors through the manual interpretation of thousands of
news and other articles allow us to investigate the impacts of these activities. However, residual spatial un-
certainty in these data remains a potential source of bias. In this article, we apply and discuss a Geographic
Simulation and Extrapolation (GeoSIMEX) approach to mitigate the spatial imprecision inherent in geoparsed
data. In conjunction with GeoSIMEX, we test and contrast multiple approaches to reducing the imprecision of
aid, including high-assumption cases in which other covariates (i.e., nighttime lights) are leveraged to allocate
aid. In our application, we find that methods which do not account for spatial imprecision find statistically
significant relationships between Chinese aid and vegetation change; after accounting for spatial uncertainty,
findings are similar for Rwanda and inconclusive for Burundi.

1. Introduction

Following recent calls to action from the United Nation's
Intergovernmental Panel on Climate Change (McCarthy, 2001; Romero-
Lankao et al., 2014) and multiple other organizations, international
donors are being challenged to ensure that human development goals
are not achieved in ways that may threaten environmental sustain-
ability (Kareiva et al., 2008; McShane et al., 2011). Different donors
have sought to engage with this challenge in different ways, such as the
monitoring and safeguards implemented by the World Bank (Buchanan
et al., 2016). By examining international aid as a causal driver of ve-
getative land cover, we argue it is possible to provide a unique window
into the effectiveness of donors in mediating their impact on the en-
vironment (c.f. Rindfuss et al., 2004; Turner et al., 2007; Turner et al.,
2003).

Past studies have illustrated the potential of using geoparsed data

consisting of the latitude and longitude of aid interventions combined
with satellite imagery to understand the impacts of aid on the en-
vironment (Buntaine et al., 2015; BenYishay et al., 2017; Runfola et al.,
2017; Zhao et al., 2017a, 2017b; Buchanan et al., 2016). These studies,
relying on a mixture of quasi-observational matching and difference in
difference modeling strategies, have examined topics ranging from the
protection of indigienous lands to infrastructure development, and re-
lated impacts on the environment. However, in every case, relatively
precise geospatial data on the location of aid was provided or retrieved
in collaboration with the donor organization.

Even in these cases, researchers frequently chose to remove - or
otherwise permute - some observations from analyses due to a lack of
fine detail geospatial data. This spatial imprecision inherent in such
data presents a core limitation in the expansion of these studies beyond
narrow contexts. In this piece, we provide an application of the
Geographic Simulation and Extrapolation (GeoSIMEX) approach that
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mitigates the potential bias from spatial imprecision. We do this in the
context of a specific application, presenting an illustrative analysis of
the impact of Chinese infrastructure aid on vegetative land cover in
Rwanda and Burundi.

As an “opaque” donor, China does not formally report recipients of
aid or development finance; project location information is not made
publicly available, if it exists at all. Following this, here we leverage a
recently-published, geoparsed dataset produced by the AidData re-
search lab (AidData, 2017). This dataset was produced through a
manual geoparsing procedure, in which place names were recorded and
assigned latitude and longitude information when it is available. We
focus on Rwanda and Burundi because both settings contain varying
degrees of spatial imprecision in their geoparsed data.

Because of inherent limitations in the available documentation, it is
common for the geographic information that is provided to be spatially
imprecise - i.e., rather than knowing the exact location of an inter-
vention, only the town or county in which it occurred is known. To
mediate this challenge, we leverage GeoSIMEX in which spatial im-
precision is treated as a special case of error-in-variables. Further, we
contrast commonly employed approaches to allocating aid associated
with imprecisely defined locations, including a comparison of the use of
population density and nighttime lights to determine allocation. In our
application, we find that methods which do not account for spatial
imprecision find statistically significant relationships between Chinese
aid1 and vegetation change; after accounting for spatial uncertainty,
findings are similar for Rwanda (low spatial imprecision in aid dataset)
and inconclusive for Burundi (high spatial imprecision in aid dataset).

2. Theory

2.1. International development and impacts on the environment

There has been considerable debate in the literature regarding the
efficacy of international aid in supporting human development - and
the associated environmental costs (c.f. Kapur et al., 1997; McKibbin
and Wilcoxen, 2002; Wade, 2003; Buntaine et al., 2015; Shandra,
2007). For indicators of economic growth, the cross-national literature
ranges from pointing to aid having no association with growth (Rajan
and Subramanian, 2008) to aid having a positive impact on growth in
countries with policies conducive to growth (Dollar and Levin, 2005).
Using nighttime lights as a proxy for economic growth, subnational
analyses have found strong correlations between World Bank aid and
nighttime lights, but no correlation between Chinese aid and nighttime
lights (Dreher et al., 2015; Isaksson and Kotsadam, 2016). Results are
similarly mixed on the impact of aid on environmental indicators. Re-
cent work has identified causal relationships between aid contributed
by non-governmental organizations and reductions in deforestation
(Shandra, 2007), but analyses focusing on the World Bank find that
some typologies of projects have contributed to deforestation (Shandra
et al., 2011). Sub-national evaluations of World Bank aid using more
precise geospatial data (as opposed to country-level aggregates) have
come to different conclusions. Buchanan et al., (2016) finds that bio-
diverse areas closer to World Bank projects experienced marginally less
forest loss than comparable areas far from Bank projects; Runfola et al.,
(2017) finds considerable spatial heterogeneity in this relationship.
Further, approaches evaluating specific projects have found some pro-
jects intending to reduce forest loss have not impacted relevant out-
come metrics sufficiently to achieve statistically significant results
(Buntaine et al., 2015; BenYishay et al., 2017).

These differential outcomes speak to the challenges of examining
land change processes that differ across geography - both human and

physical - and highlight recent calls to the land change science com-
munity to focus on approaches which both (a) improve our ability to
understand the cumulative impact of many small events, and (b) further
bridge the gap between local and global scale processes (see Foley et al.,
2005; Nagendra et al., 2004; Turner et al., 2007). Although examining
the causal impact of international aid on environmental outcomes has
been a central goal of many communities, there has been a limited
collaboration between geographers and economists to identify strate-
gies to leverage spatial data for causally-identified analyses (Corrado
and Fingleton, 2012). This has resulted in methodological limitations
which stem from distinctions between modeling efforts seeking to
predict relationships commonly taught and accepted by the geographic
community (i.e., spatial regression or classification trees), and efforts
which seek to establish causal relationships similarly taught and ac-
cepted by the economics community (i.e., propensity score matching or
difference-in -difference modeling). Recent efforts have sought to merge
these disciplinary approaches (see Drukker et al., 2013; BenYishay
et al., 2017; Buntaine et al., 2015; Buchanan et al., 2016), but many
open questions remain as to how concerns of spatial imprecision, au-
tocorrelative effects and geographic heterogeneity can be mitigated
(Runfola and Napier, 2016; Corrado and Fingleton, 2012). This paper
engages explicitly with the case of spatial imprecision inherent in many
sources of geoparsed data, and provides one methodological approach
(GeoSIMEX) to overcome challenges of imprecision.

2.2. Spatial imprecision

The lack of exact geographic information on where measurements
are obtained presents a frequent barrier to research. This has become
increasingly evident as more scholars integrate geographic data from
multiple sources - for example, census, satellite, and GPS sources - to try
and establish causal or predictive relationships (c.f., Bare et al., 2015;
Buntaine et al., 2015; Gallo and Goodchild, 2012; Andam et al., 2008).
Past literature has shown that uncertainty in the locations of where
measurements are taken can produce biased estimates in empirical
analyses (Perez-Heydrich et al., 2013; Rettie and McLoughlin, 1999).
For example, Perez-Heydrich et al. show that regression coefficients
will be biased when using raster data in conjunction with point data,
where the true locations of the point data are only known to exist
within some 5–10 km radius of the measured location (Perez-Heydrich
et al., 2013). Moreover, when outcome data are spatially joined to
imprecisely measured aid locations, the resulting errors can lead to
attenuation bias (Grilliches and Hausman, 1986). One frequently cited
“best practice” to overcome this challenge is to take average raster
values within a buffer encompassing where the point could have fallen,
instead of the single raster value associated with the point (Perez-
Heydrich et al., 2013; Rettie and McLoughlin, 1999). Another practice
to address spatial uncertainty is to aggregate to some higher spatial
scale where there is no spatial uncertainty (Perez-Heydrich et al.,
2013). Yet another method is to only use information for which exact
(or, otherwise very precise) geographic information is known (Runfola
and Napier, 2016). Relatively little guidance exists as to what the im-
pact of these choices might be.

Scholars in the geographic community have also engaged in re-
search seeking to integrate information on the precision of geographic
data to improve the accuracy of modeling efforts, focusing on avoiding
biases that might manifest following aspatial approaches (Aerts et al.,
2003; Ogryczak and Sliwinski, 2009). The approach used in this paper -
GeoSIMEX - expands on these methods, integrating an extrapolation
step into traditional Monte Carlo approaches to avoid bias due to im-
precision. Such bias can be simply understood using a hypothetical case
in which all data is fully imprecise - i.e., interventions are only known
to have occurred somewhere within the study area, but it is unknown
where. In a Monte Carlo approach, the expected coefficient generated
by re-fitting such a model thousands of times would be 0 - re-
presentative of random noise. As spatial imprecision increases, so too

1 In this paper, we examine all sources and types of Chinese official financing.
We use the term “Chinese aid” to refer to these financial flows for ease of ex-
position.
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will the bias towards 0 in Monte Carlo-based procedures; this is fre-
quently referred to as attenuation bias.

In this piece, we illustrate the ways in which GeoSIMEX leverages
extrapolation to mitigate attenuation bias due to spatial imprecision,
and highlight how the performance of GeoSIMEX is mediated by im-
putation assumptions related to the geographic location of international
aid (i.e., allocating aid towards population centers). Throughout each
section we provide readers with insights into the key decisions that
must be made when using imprecise spatial data, the implications of
these decisions, and some of the tradeoffs in using GeoSIMEX relative to
existing solutions. We then illustrate these tradeoffs in a case study
focusing on the allocation of Chinese Aid to both Burundi and Rwanda.
Finally, the Appendix provides detailed notes on a simulation study
illustrating the effectiveness of GeoSIMEX, and guidance on the para-
meterization of GeoSIMEX in different hypothetical study contexts.

3. Calculation

In this section, we detail two common “best practices” to mitigating
spatial imprecision - (1) excluding spatially imprecise data, and (2)
using assumptions about aid allocation - and discuss the challenges
related to these procedures.

3.1. Excluding spatially imprecise data

One approach frequently applied by researchers when faced with a
dataset that includes data of varying spatial precision is to remove data
which does not meet a spatial precision threshold, relying only on
geographic locations that are known with a specified level of certainty.
Excluding spatially imprecise aid avoids making explicit assumptions
about how imprecisely measured interventions are truly distributed
across space. This approach comes with a number of limitations, and
can result in erroneous parameter estimates.

Excluding spatially imprecise aid may bias estimates of aid impacts
if imprecise aid is allocated according to different processes than spa-
tially precise aid. Such a dynamic may often exist in practice. For ex-
ample, aid dedicated to sectors such as health frequently contain a mix
of precision in documentation due to the need for confidentiality in
certain classes of projects. Another example is when two different do-
nors are active in the same country, but one donor reports very specific
geographic information and another little to no geographic informa-
tion. This type of systematic bias can result in erroneous parameter
estimates.

Fig. 1 uses a hypothetical example of aid allocated to Uganda to
illustrates the consequences of excluding spatially imprecise aid. Two
coordinating donors allocate aid to Uganda: donor A allocates funds to
all districts in Western Uganda and donor B allocates funds to all dis-
tricts in Northern Uganda. However, donor B's project documentation is
poor - donor B only specifies that aid was allocated somewhere in
Uganda, and so the researcher has no way of knowing where this aid
was allocated.

Using this example, three plausible scenarios are examined where
the true impact of donor projects vary. In each scenario, using the unit
of observation as each district, the following model is estimated:

= +Change in Wealth Aidi i i0 (1)

where Change in Wealth is the change in wealth between two arbitrary
years across each district, Aid is a binary variable indicating whether a
district received aid, i is a unique index for each district, β0 is the in-
tercept (set to 1 for this example) and θi is the impact of aid in district i
(set from one to four in this example, following a uniform random
distribution). In this hypothetical, districts which receive no aid have a
change in wealth of one unit in the positive direction, and units which
receive aid can have a change in wealth from between 1 and 5

depending on the simulated impact of aid.
In the first scenario, both donor A and B's projects were effective,

resulting in increases in wealth across most intervention areas - the map
in Fig. 1b shows the hypothetical θi used for each district i. In the
second scenario, only donor A's projects effectively increases wealth
(Fig. 1c), and in the third scenario only donor B's projects effectively
increases wealth (Fig. 1d).

Two estimates of Aid are contrasted for each scenario. First, the
“true” locations of aid are used in a simple linear estimation (following
eq. (1)), where districts that received aid from either donor A or donor
B are considered treated. The second estimate is representative of what
a researcher might actually observe, in which only locations with spa-
tially precise aid are used for estimation. The goal in each case is the
same: to accurately model the average θ (i.e., estimate the average
treatment effect) in the “true aid” case.

Fig. 1e–g illustrate the difference in coefficients estimates (θ) when
the two cases (no spatial imprecision and removing spatially imprecise
data) are compared. Because no error is introduced in equation (1), the
mean estimates represented by “true” locations are representative of
the true average θ across all units i. Differences between the “true” and
spatially precise-aid only case represent the bias resultant from drop-
ping out imprecise aid in each scenario.

When both donor A and B projects are effective (scenario 1;
Fig. 1e), only using spatially precise aid results in a downward bias;
further, the true impact is not captured within the 95% confidence
interval. In contrast, when only donor A projects are effective (sce-
nario 2; Fig. 1f), only using spatially precise aid results in an upward
bias (noting the confidence interval still fails to include the true im-
pact). When only donor B's projects are effective (scenario 3; Fig. 1g),
only using spatially precise aid results in a strong downward bias
(flipping the sign on θ).

Because researchers are unaware as to the relative effectiveness of
imprecise aid compared to precise aid, the direction of biases from
excluding spatially imprecise data remains unknown in any research
application. Spatially imprecise data may act as an omitted variable, as
the true locations of spatially imprecise data may be correlated with
both spatially precise data and the outcome of interest.

3.1.1. Assuming aid allocation process
Another common approach to incorporating spatially imprecise

data is to make assumptions regarding how data should be allocated to
smaller spatial scales - a process referred to as both imputation (e.g.,
Jones et al., 2010; Sreenivas et al., 2014) and dasymetric mapping (e.g.,
(e.g., Holt et al., 2004; Bielecka, 2005; Eicher and Brewer, 2001) This
section illustrates that the amount of bias that can occur from imputing
aid to smaller spatial scales is a function of (1) the magnitude of spatial
imprecision and (2) the accuracy of assumptions used for imputation.

To explore this, a hypothetical country with 60 subcounties, 30
counties, 10 districts and 2 regions is generated. Each subcounty is first
randomly assigned a “true” probability of receiving aid (unknown to
the researcher). Second, three hypothetical “imputed” probabilities of
receiving aid (i.e., a probability that a researcher would generate) are
generated: (1) A zero-correlation case, in which there is no correlation
with the true probability; (2) a negative-correlation case, in which there
is an inverse correlation with the true probability, and (3) a perfect
correlation case, in which the researcher perfectly replicates the true
aid probability. After these probabilities are assigned, 200 aid projects
are randomly allocated to subcounties according to the true probability
of receiving aid. In this hypothetical, each aid project is allocated $1
million USD towards a project designed to increase wealth. A
Total− Change− In−Wealth variable is then defined for each sub-
county S as a one-to-one relationship according to equation (2):

= +Total Change In Wealth Aids s (2)
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where ε is normally distributed, and θ=1.
Spatial imprecision is then imposed on a random subset of aid

projects by masking the true subcounty where the project was allocated
to replicate the data a researcher might have access to. After masking
the true location, we re-estimate equation (2), calculating Aids fol-
lowing the three imputation scenarios outlined above (perfect, zero,
and inverse correlation). Here, the amount of aid per subcounty in-
volves imputing aid amounts from high-level administrative areas (i.e.,
districts, regions or the country) down to subcounties for spatially im-
precise aid. For example, if a $1 million project is allocated to a district
with four sub-counties, the $1 million is allocated proportionally based
on the assumed probability within the subcounties. Consequently, as
spatial imprecision grows, the aid variable will becoming increasing
correlated with the assumed probability, up to an extreme case of
perfect imprecision in which all aid allocation is determined by re-
searcher-defined assumptions; only the total quantity of aid would be
provided by the source data in this perfect imprecision scenario.

Fig. 2 illustrates how bias in regression coefficients changes as
spatial imprecision increases under the three assumption scenarios. In
each of the three figures, the x-axis represents spatial imprecision (with
larger values indicating increasing imprecision, estimated following
equation (3)), and the y-axis represents the estimated θ value (in which
the true θ=1). The x-axis (λ) captures the degree of spatial imprecision
in a dataset by calculating:

=
Area of Coverage

Total Possible Area of Coverage
i
P

i
P

(3)

where i is an individual aid project out of P total aid projects, Area of
Coveragei is project i's known area of coverage defined by the available
documentation - i.e., the geographic area within which the project is
known to have been implemented (i.e., the town in which a clinic was
built), and Total Possible Area of Coveragei is the area of coverage of
project i under complete spatial imprecision. Conceptually, this

Fig. 1. Comparison of different cases in which imprecise spatial information is excluded from the analysis.
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represents the maximum possible geographic area across which aid
might be distributed if you have no additional knowledge other than
that it was distributed to a location within your study region. For ex-
ample, if you are studying a particular country's aid allocation, it may
be known that the federal government received aid, but no specific
district within the country to which that aid was given is known. In this
case, both the numerator and denominator would be the geographic
area of the country. λ ranges between 0 and 1, in which 0 indicates
perfect precision (i.e., exact knowledge of locations is known), and 1
indicates perfect imprecision (all that is known is that each aid inter-
vention occurred somewhere within the entire study area).

100 simulations are shown on each plot in Fig. 2, and 95% con-
fidence intervals of the θ estimate are provided. Panel 1 illustrates the
increasing bias in aid under a random aid allocation scenario - as the
precision of known aid decreases, by design the θ estimates approach 0.
This panel illustrates the importance of both the imputation procedure
chosen, as well as the spatial precision of the source data - under strong
spatial precision cases, even random allocation strategies can still result
in valid coefficient estimates. Panel 2 illustrates the variation in coef-
ficient estimates which can occur if a researcher makes very bad as-
sumptions about where aid is geographically allocated, represented by
a correlation of −1. As this figure shows, strong source data can mi-
tigate the impact of poor assumptions, but only to a λ of approximately
0.25. Panel 3 illustrates that, even in cases of extreme imprecision,
distributional assumptions will not bias regression coefficients when
assumptions are correct.

4. Data and methods

4.1. Data

As an illustrative case study incorporating spatial uncertainty, we

examine the causal impact of Chinese infrastructure aid distributed
from 2007 to 2011 on vegetation in Burundi and Rwanda. This study
leverages a dataset on the location of Chinese foreign aid at varying
levels of precision (i.e., the exact location of each project is not always
known; AidData, 2017). Table 1 summarizes the number of projects and
spatial imprecision of the Chinese data for Burundi and Rwanda. The
Chinese aid data for Burundi has a moderate amount of spatial im-
precision (λ=0.37); over two-thirds of the project locations are mea-
sured at a level coarser than the unit of analysis (ADM2) for the study.
Contrasting to this, the Chinese aid data for Rwanda is measured with
mild spatial imprecision (λ=0.15); 20 out of 27 projects are measured
at the level of the unit of analysis.

Vegetation is measured using a satellite-derived metric of vegetative
density, the Normalized Difference Vegetation Index (NDVI), from
NASA's Long Term Data Record (LTDR; NASA, 2017). While the goal of
this case study is illustrative - i.e., we seek to contrast GeoSIMEX to
other methodological approaches, we provide an example of how dif-
ferences in findings may occur even in models that have the goal of
causal attribution. Thus, a difference-in-difference modeling strategy is
followed, in which average NDVI before aid was allocated (pre-2007) is
contrasted to the average NDVI after aid was allocated (post-2011). The
model is described in equation (4):

= + + +
=

Y A Xi i
k

N

k i i0
1 (4)

where Yi is the difference in the average forest loss post-2011 (2012
and 2013) and pre-2007 (2001–2006) in a country's second adminis-
trative division (ADM2); θ represents the estimated impact of aid, Xi is a
vector of controls which includes changes (i.e., post minus pre periods)
in average amounts of nighttime lights and maximum, minimum, and
average levels of air temperature and precipitation, k an index for each
control covariate, Ai the aid allocated to each ADM2 and εi are the error
terms.

After estimating OLS models, we test whether spatial autocorrela-
tion exists in the residuals by calculating Moran's I. As an additional
point of comparison with the existing literature on bias due to spatial
autocorrelation (c.f. Anselin, 2003; Anselin, 2002; Anselin and Cho,
2002; Anselin, 2013; LeSage and Pace, 2009), we estimate spatial error
models as described in equation (5)

= + + +
= +

=Y A X
W

i i k
N

k i i

i i i

0 1

(5)

Fig. 2. Consequences of Spatial Imprecision. Each panel shows the relationship between a simulated true impact of 1 and estimated impacts, with vertical black bars
representing naive (OLS) estimates of that impact (95 percent confidence intervals). The y-axis represents the estimated impact, and the x axis is the degree of spatial
imprecision in the data. Panel 1 represents the case in which a researchers estimates of aid allocation are random (i.e., the “null” case), the second panel represents
the case where estimates of aid allocation are incorrect (R=−1), and the third panel indicates the case where a researchers estimates of aid allocation are correct
(R= 1).

Table 1
Summary of data for case studies.

Dataset Characteristic Burundi Rwanda

Number of Projects 9 13
Number of Project Locations 17 27
Spatial Precision: ADM 2 Level 5 20
Spatial Precision: ADM 1 Level 6 4
Spatial Precision: Country-Level 6 3
Spatial Imprecision (λ) 0.37 0.15
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where εi are the error terms spatially weighted using weights matrix
W, τ is the spatial error coefficient and ξi are uncorrelated error terms.
Each dataset is processed and aggregated according to average values
within each ADM2.

Ai is calculated following four estimation strategies to examine the
robustness of findings when different imputation approaches are fol-
lowed. These approaches include allocating aid proportionally ac-
cording to: (a) baseline (2005) values of population (CIESIN, 2000), (b)
average nighttime lights (NOAA, 2017), (c) spatial area (GADM), and
(d) the amount (in USD) of spatially precise aid allocated within each
ADM2 (AidData, 2017). Four naive and GeoSIMEX models are esti-
mated, one using each imputation approach, for a total of eight models.

4.2. GeoSIMEX method

This section describes the methodology employed to account for
spatial imprecision in this paper —Geographic SIMEX (GeoSIMEX). We

provide illustrative simulation results in Appendix A, as well as a dis-
cussion of the key ways in which our GeoSIMEX application in this
piece diverges from previous applications. GeoSIMEX is based on the
simulation and extrapolation method (SIMEX), which provides one
solution to address measurement error in covariates (Wang et al., 1998;
Li and Lin, 2003; Cook and Stefanski, 1994). It relies on estimating a
trend between increasing spatial imprecision and bias, i.e., the trend
observed in Fig. 2.

GeoSIMEX first involves estimating a naive model (which can be of
variable functional forms; for illustration we use ordinary least squares
regression). To estimate the naive model, aid measured with spatial
imprecision must be imputed to the administrative level of the unit of
observations (i.e., subcounties). Using the four imputation cases de-
scribed above to estimate subcounty-level values of aid, a naive OLS
model is estimated. In addition, the spatial imprecision (λ) value of the
dataset is recorded. Additional error is simulated to re-create the da-
taset at coarser (larger) values of λ, the imputation process and model

Fig. 3. Steps of GeoSIMEX. The Y-axis on each figure represents the treatment impact (θ) of a hypothetical case study. The X-axis on each figure represents the degree
of spatial imprecision (λ) for each of the original (orange) and simulated (black) datasets.
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fitting repeated, and parameter estimates and λ recorded for each im-
putation case. This information is then used to back-extrapolate for
each imputation case to the point of zero imprecision, λ=0.

The specific steps of GeoSIMEX are summarized in Fig. 3. Fig. 3A
shows the estimation of the original model, based on the imputation
strategy a researcher selected for the estimation of Ai (i.e., allocating
aid to areas with higher populations). The point represents the coeffi-
cient estimate for θ, and vertical line indicates the 95% confidence
interval. Each additional dot in Fig. 3B represents a model in which aid
with a known level of spatial precision is intentionally decreased (i.e.,
additional imprecision is added), and the imputation and model fit
procedure is repeated. Fig. 3C shows a binning procedure, in which an
arbitrary number of bins are created from which parameter estimates
can be sampled (more detail on the selection of these bins can be found
in the below simulation analysis). Fig. 3D shows a back-extrapolation
procedure, in which a best fit line is fit through the average values
identified in each bin and the θ estimate is calculated for λ=0 (i.e., the
no spatial imprecision case). Fig. 3E shows a bootstrapped standard
error procedure, in which a number of parameter estimates are taken
from each bin and the extrapolation procedure repeated, resulting in a
range of possible solutions. Finally, Fig. 3F shows the 95% confidence
interval calculated based on the iterative extrapolation procedure in
step 5 (Fig. 3E).

A number of parameters must be selected for the GeoSIMEX esti-
mation procedure - we use a simulation procedure described in
Appendix A to identify those that are most accurate in our use case. Key
of these parameters is the number of bins used in the back-extrapolation
procedure (Fig. 3C). As further detailed in Appendix A, for users seeking
to use GeoSIMEX our simulation results suggest that the number of bins
that is most appropriate is highly dependent on the spatial accuracy of
the source data. For finer-resolution data, larger bin values (between 5
and 10) are more appropriate (see Table 4 for more specific guidance).
For coarse-resolution data, smaller bin values (between 3 and 4) tend to
provide more accurate results.

5. Results: case study

Tables 2 and 3 report results from the Burundi and Rwanda case
studies respectively. Due to an indication of spatial autocorrelation in
the case of Burundi, a Spatial Error Modeling approach was pursued
follow equation (5). The Burundi case study illustrates how spatial
imprecision can weaken researchers' ability to find robust, significant
relations in data. The Burundi data has a moderate degree of spatial

imprecision (λ=0.37). In Burundi, naive models (1–4) show mixed
results as to the impact of Chinese aid. When imprecise aid is allocated
according to population, the naive model shows Chinese aid having a
significant impact on reducing forest loss (p < 0.01); however, the
other naive models show no significant association between Chinese aid
and forest loss.

Contrasting to the more traditional modeling approaches, in
Burundi none of the GeoSIMEX models show Chinese aid having a
significant impact on forest loss. This is representative of an increase in
the standard errors attributable to the incorporation of known spatial
uncertainty, capturing the low spatial precision of this data.

The Rwanda case study illustrates how naive and GeoSIMEX models
will be more similar under lower levels of spatial imprecision, as
Rwanda has a relatively smaller amount of spatial imprecision
(λ=0.15) as contrasted to Burundi. Naive models (1–4) show that
Chinese aid reduced forest loss across all models. When imprecise aid is
allocated according to population, nighttime lights, or low precision
aid, the coefficient on aid is significant at the 5% level; when imputing
aid based on area the coefficient is significant at the 10% level.

Across different aid allocation assumptions, naive models show a
relatively similar impact of Chinese aid; coefficients range from−0.008
to −0.012. When accounting for spatial imprecision through
GeoSIMEX, the coefficients remain similar to those in the naive models.
Additionally, when assuming aid is allocated according to population,
nighttime lights or low precision aid, the coefficient on aid remains
significant at the 5% level; when imputing aid based on area, the aid
coefficient is no longer significant.

It is also useful to examine how standard errors change between
naive and GeoSIMEX models. In the Rwanda case study, standard errors
only mildly change due to low amounts of spatial imprecision (though
they tend to increase). However, in the Burundi case study, standard
errors change to different extents depending on assumptions regarding
the allocation of spatially imprecise aid. When aid is allocated ac-
cording to area, population, or low precision code aid, standard errors
increase by 0.447, 0.114, and 0.401 respectively from naive to
GeoSIMEX models. However, when aid is allocated according to
nighttime lights, the standard error increases by 0.896. Simulation re-
sults suggests that less accurate assumptions when imputing Ai will
yield larger standard errors; consequently, this suggests that nighttime
lights may be an inaccurate assumption about the aid allocation pro-
cess. However, dynamics beyond accuracy of assumptions influence
changes in standard errors from naive to GeoSIMEX models, so any such
interpretations must be conducted with caution.

Table 2
Case study results for Burundi under different assumptions of aid allocation. ‘NTL’ refers to baseline nighttime lights. ‘PC’ refers to precision code. OLS refers for
ordinary least squares models and SEM refers to spatial error models. Control variables were included in all models; N=109. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Dependent variable: Percent Forest Loss

OLS spatial error

Naive [OLS] Naive [SEM] geoSIMEX [SEM]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Aid (Area) 0.03971
(0.07511)

0.07826
(0.07260)

−0.10045
(0.51943)

Aid (Population) −0.17876∗∗∗
(0.05779)

−0.14301∗∗
(0.05992)

−0.08245
(0.17440)

Aid (NTL) 0.07193
(0.08123)

0.09612
(0.07441)

0.08979
(0.97009)

Aid (Low PC Aid) 0.01351
(0.05208)

0.02846
(0.04511)

−0.24064
(0.44589)
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6. Discussion and conclusion

Geographically-referenced aid information often is measured with
spatial imprecision. When faced with spatial imprecision, researchers
often exclude spatially imprecise data or make assumptions about how
spatially imprecise aid was allocated. However, excluding imprecise
data or making incorrect assumptions can lead to biased estimated
coefficients, potentially resulting in misleading policy conclusions. This
paper describes a method for accounting for spatial imprecision,
GeoSIMEX, and illustrates how researchers can use it in conjunction
with imputation assumptions for aid allocation processes.

The method has three notable advantages. First, the method can
help correct biases in regression coefficients caused by spatial im-
precision that Monte Carlo simulation alone can not. Second, the
method increases uncertainty in regression coefficients as spatial im-
precision grows, which allows results to incorporate the inherent
quality of the underlying data (i.e., reflecting “known unknowns” of the
data). Third, while the accuracy of assumptions about aid allocation
processes will remain unknown to researchers, GeoSIMEX can be used
in conjunction with imputation assumptions to enable researchers to
trade off assumptions for higher degrees of spatial precision.

The presented case study illustrated how different assumptions
about aid allocation can lead to different results, and highlights the
importance of incorporating spatial imprecision in analyses. The
Burundi case had moderate amounts of spatial imprecision, resulting in
no GeoSIMEX models showing significant relationships between aid and
deforestation, contrasting to a finding of statistical significance in one
of the four test cases under a naive modeling case. In the case of
Rwanda, which had more precise spatial data, the GeoSIMEX estima-
tion strategy identified a significant relationship between Aid and
Forest Loss in three of the four test cases; this contrasts only slightly to
the naive modeling approach where all four of the test cases identified a
significant relation. These findings are in-line with what one might
intuitively expect: as the spatial data available becomes less precise, so
too does our ability to make significant statements about underlying
patterns.

Based on the findings of our case study and simulations, we suggest
researchers facing similar challenges of spatial imprecision leverage
methods such as GeoSIMEX over other existing tools (i.e., Monte Carlo
analyses) to mitigate the chance of attenuation biases leading to erro-
neous results. However, the GeoSIMEX procedure requires researchers
to make explicit a number of assumptions. Here, we provide some

guidance for future researchers in how parameterizations and as-
sumptions might be made in other cases, using our own case study as an
example. We also note a number of potential avenues for future re-
search:

• Parameterization of the number of bins used for back-extrapolation
for GeoSimex. We calculate the spatial imprecision in our source
data (λ), and use the guidance provided from simulations sum-
marized in Table 5 to select an appropriate number of bins.
• Assumptions of how aid is allocated within units. In our case study
results, we find that GeoSIMEX provides more stringent estimates of
the impact of international aid irrespective of aid allocation deci-
sions (i.e., significance is less likely to be found contrasted to naive
models irrespective of the allocation assumption made). Simulation
suggests that “null case” estimates (i.e., when allocation is con-
ducted purely based on spatial area) provide a strong option, and
due to the lack of additional assumptions is our preferred approach.
• There are a variety of options for the process of back-extrapolation
to the λ=0 point, as seen in Fig. 3D. Based on simulation results,
we select a quadratic fit; future research could provide better gui-
dance to researchers by contrasting more strategies.
• GeoSIMEX provides unbiased estimates in cases of minor to mod-
erate spatial uncertainty (i.e., λ≤0.5), but has weaker results as the
total spatial uncertainty increases beyond λ > 0.5 (see Fig. 5). This
can be mediated by making strong assumptions regarding aid allo-
cation, but is an avenue for future research (see Fig. 7 for simulation
results examining this topic).

While we have explored many of these topics through simulation to
identify the contexts in which GeoSIMEX assumptions and para-
meterizations are successful, we also recognize that the range of cases
different researchers might engage with could extend beyond the scope
of our simulations. Future research exploring more tailored simulations
for a wider variety of contexts could help provide more explicit direc-
tion to researchers.

GeoSIMEX provides a step forward in allowing researchers to in-
corporate spatial imprecision into analysis. However, further work re-
mains to improve GeoSIMEX. In particular, while GeoSIMEX reduces
the risk of committing a type I error—wrongly concluding sig-
nificance—it heightens the risk of committing a type II error—wrongly
concluding insignificance. In this piece, we begin examining the po-
tential of using ancillary information such as population and nighttime

Table 3
Case study results for Rwanda under different assumptions of aid allocation. ‘NTL’ refers to baseline nighttime lights. ‘PC’ refers to precision code. OLS refers for
ordinary least squares models. Control variables were included in all models; N=30. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Dependent variable: Percent Forest Loss

Naive [OLS] geoSIMEX [OLS]

(1) (2) (3) (4) (5) (6) (7) (8)

Aid (Area) −0.00942∗
(0.00504)

−0.00836
(0.00528)

Aid (Population) −0.01242∗∗
(0.00447)

−0.01194∗∗
(0.00456)

Aid (NTL) −0.01126∗∗
(0.00484)

−0.01130∗∗
(0.00514)

Aid (Low PC Aid) −0.00859∗∗
(0.00384)

−0.00839∗∗
(0.00397)
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lights to — in effect — tradeoff assumptions about where aid is allo-
cated (i.e., to more populous regions) in exchange for a reduction in
spatial imprecision. By exploring the potential for such tradeoffs, it is
possible effective routes forward that can incorporate both spatial un-
certainty and mitigate the risk of type II error may be found. Such
approaches would have broad impact outside of research examining
international aid, and have direct application to a wide range of prac-
titioners following spatial imputation procedures to make fine-scale
estimates based on spatially imprecise data.
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A. Simulation analysis of GeoSIMEX

A.1. Simulation methods

While previous research has begun to examine the accuracy of GeoSIMEX under “null assumption” cases (i.e., equally spreading aid across all
subunits; Runfola et al., 2016), no simulation study has examined the efficacy of GeoSIMEX when different assumptions regarding the distribution of
aid are made (e.g., distributing aid according to population). We employ a Monte Carlo simulation to examine the accuracy of GeoSIMEX at different
levels of spatial imprecision and using a range of accuracies for the spatial imputation step (i.e., some simulations reflect a scenario where a
researcher chooses an accurate imputation assumption, and others where they do not). Each simulation follows six steps.

First, one of three hypothetical countries with different administrative hierarchies is generated: (1) a country with 60 subcounties, 30 counties,
10 districts and 2 regions, (2) a country with 120 subcounties, 40 counties, 20 districts and 5 regions, or (3) a country with 120 subcounties, 60
counties, 30 districts and 10 regions. Each subcounty is randomly assigned a (known) probability of receiving aid. Additionally, to simulate the
assumptions a researcher might make in the imputation of spatially imprecise aid, an assumed probability is generated which is correlated with the
true probability by a random amount, ranging from −1 to 1.

Second, 50 to 250 aid projects are randomly allocated to subcounties, according to the assigned (known) probability of a subcounty receiving
aid. Third, a simulated measurement of wealth is generated according to the following equation:

= +Wealth Aid (A.1)

where θ equals one, indicating there is a one-to-one relation between aid and wealth.
Fourth, each aid project is assigned a code indicating the spatial precision that a researcher might see in practice. Codes range from indicating

that the project fell within a sub-county (no spatial imprecision) to falling somewhere within a country, district, region, or the country. Each code is
assigned randomly, and the overall precision of the simulated dataset a researcher might see is quantified following equation (3) (λ).

Fifth, equation (A.1) is estimated using a linear model. Here, the expected value of aid is used—imputing aid based on the assumed probability of
receiving aid for projects assigned a coarse precision. Sixth, equation (A.1) is estimated using two modeling approaches that explicitly incorporate
spatial imprecision: GeoSIMEX and a Monte Carlo model averaging approach. In the model averaging approach, 500 regression models are estimated
where spatially imprecise aid is imputed independently each iteration. At each iteration, each unit is assigned a random probability of receiving aid
drawn from a 0–1 uniform distribution. Aid is imputed to units using this random probability. Coefficients and standard errors are averaged
following Burnham and Anderson (2002).

This process is repeated approximately 5 million times to account for the large range of parameters being tested (see Table 4). Simulation results
are examined in three steps. First, we identify the parameters within GeoSIMEX that optimize its performance according to two criteria: (1) the
ability of GeoSIMEX to capture the true coefficient and (2) the ability of GeoSIMEX to capture the true coefficient with statistical significance at the
95% level.

Second, using only simulations which used the optimal parameters selected in step one, we test whether simulations corroborate the theory of
GeoSIMEX. Specifically, we explore the intersection between imputation, imprecision and bias. Third, we compare the performance of GeoSIMEX to
a naive model and the model averaging approach under both different levels of spatial uncertainty and accuracy of imputation assumptions.

A.2. Optimizing GeoSIMEX parameters

This section examines how the performance of GeoSIMEX varies with different parameters. Four parameters are tested within GeoSIMEX: (1) the
number of iterations within GeoSIMEX where additional imprecision is simulated (100, 250 or 500), (2) the number of bins that are used to perform
extrapolations, (3) the number of values taken from each bin to perform extrapolations, and (4) whether the values from each bin are averaged
before taking an extrapolation. Two metrics of performance are examined: first, whether the 95% confidence interval on the aid variable captures the
true coefficient and second, whether the 95% confidence interval captures both the true coefficient and statistical significance.

Linear regression models are estimated to understand how parameters are correlated with measures of performance. To explore how the optimal
parameters for GeoSIMEX fluctuate based on the magnitude of spatial imprecision in a dataset, we divide the sample into three groups based on the
level of spatial imprecision: < <0 1

3 , < <1
3

2
3 , and < < 12

3 .
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A.2.1. GeoSIMEX parameter optimization
Table 4 shows regression results for the parameter optimization. Each column in this table represents one of three cases. The first case (as seen in

the first column of data) is representative of a regression in which a binary value (0 or 1) is the outcome (Y) value, and the parameters of each
simulation iteration are regressed to establish which simulations resulted in outcome Y. In this first column, Y is equal to 1 in all simulation iterations
in which, at the 95% confidence interval, the true estimate of treatment impact (θ=0) is observed. All other columns of data follow a similar
approach; in the second column, Y is equal to 1 in all iterations in which the true estimate of the treatment impact (θ=1) is observed; in the third
column Y=1 when the true estimate of the treatment impact (θ=1) is observed and found to be statistically significant. Three groupings of these
models are estimated, one for each level of spatial imprecision.

A few general trends emerge from these simulations. Across most models, a greater number of simulations within GeoSIMEX resulted in more
accurate parameter estimates. Using a quadratic extrapolation versus a linear extrapolation also generally improves the performance of GeoSIMEX.
This result suggests that users should first try using a quadratic extrapolation; however, users should always examine the trend between imprecision
and regression coefficients to determine whether other methods of extrapolation would better fit the data.

The regression results show a notable tradeoff between the ability of GeoSIMEX to capture only the true coefficient or the true coefficient and
significance in regards to the number of bins used and the number of values taken from within each bin. Greater number of bins used in the
GeoSIMEX procedure tends to increase the ability of GeoSIMEX to capture the true coefficient; however, additional bins worsens the ability of
GeoSIMEX to capture significance. Using greater number of values within each bin shows a similar trend of being beneficial to capture the true
coefficient and significance but worsens the ability of GeoSIMEX to only capture the true coefficient. Within-bin averaging improves the ability of
GeoSIMEX to capture the true coefficient in low to medium levels of spatial imprecision and worsens the ability of GeoSIMEX to capture significance
under medium levels of spatial imprecision.

Table 4
Performance of GeoSIMEX Based on Parameters.

0 < λ < 0.33 0.33 < λ < 0.66 0.66 < λ < 1

True Coef= 0 True Coef= 1 True Coef= 0 True Coef= 1 True Coef= 0 True Coef= 1

Contain True
Coef

Contain True
Coef

Contain True Coef
&Sig.

Contain True
Coef

Contain True
Coef

Contain True Coef
&Sig.

Contain True
Coef

Contain True
Coef

Contain True Coef &
Sig.

250 Simulations 0.013∗∗∗
(0.002)

0.014∗∗∗
(0.003)

0.010∗∗∗
(0.003)

0.022∗∗∗
(0.003)

0.028∗∗∗
(0.003)

−0.0001
(0.004)

0.031∗∗∗
(0.003)

0.017∗∗∗
(0.003)

−0.005
(0.003)

500 Simulations 0.014∗∗∗
(0.002)

0.022∗∗∗
(0.003)

0.017∗∗∗
(0.003)

0.030∗∗∗
(0.003)

0.035∗∗∗
(0.003)

−0.006∗
(0.004)

0.038∗∗∗
(0.003)

0.026∗∗∗
(0.003)

−0.003
(0.003)

Sim. Precise Data −0.072∗∗∗
(0.002)

−0.191∗∗∗
(0.002)

−0.253∗∗∗
(0.002)

−0.073∗∗∗
(0.002)

−0.084∗∗∗
(0.002)

−0.167∗∗∗
(0.003)

−0.038∗∗∗
(0.002)

0.025∗∗∗
(0.003)

0.012∗∗∗
(0.003)

Quadratic Extra-
p.

0.135∗∗∗
(0.002)

0.281∗∗∗
(0.002)

0.174∗∗∗
(0.002)

0.275∗∗∗
(0.002)

0.344∗∗∗
(0.002)

−0.205∗∗∗
(0.003)

0.428∗∗∗
(0.002)

0.424∗∗∗
(0.003)

−0.439∗∗∗
(0.003)

Bins: 4 −0.014∗∗∗
(0.004)

−0.032∗∗∗
(0.004)

0.057∗∗∗
(0.005)

−0.020∗∗∗
(0.004)

−0.029∗∗∗
(0.005)

0.032∗∗∗
(0.006)

−0.031∗∗∗
(0.005)

−0.034∗∗∗
(0.006)

0.015∗∗∗
(0.006)

Bins: 5 −0.029∗∗∗
(0.004)

−0.059∗∗∗
(0.004)

0.073∗∗∗
(0.005)

−0.044∗∗∗
(0.004)

−0.053∗∗∗
(0.005)

0.069∗∗∗
(0.006)

−0.042∗∗∗
(0.005)

−0.061∗∗∗
(0.006)

0.008
(0.006)

Bins: 6 −0.039∗∗∗
(0.004)

−0.084∗∗∗
(0.004)

0.067∗∗∗
(0.005)

−0.057∗∗∗
(0.005)

−0.078∗∗∗
(0.005)

0.087∗∗∗
(0.006)

−0.056∗∗∗
(0.005)

−0.073∗∗∗
(0.006)

0.006
(0.006)

Bins: 7 −0.045∗∗∗
(0.004)

−0.100∗∗∗
(0.004)

0.058∗∗∗
(0.005)

−0.062∗∗∗
(0.004)

−0.092∗∗∗
(0.005)

0.104∗∗∗
(0.006)

−0.073∗∗∗
(0.005)

−0.082∗∗∗
(0.006)

0.012∗∗
(0.006)

Bins: 8 −0.053∗∗∗
(0.004)

−0.107∗∗∗
(0.004)

0.060∗∗∗
(0.005)

−0.075∗∗∗
(0.005)

−0.109∗∗∗
(0.005)

0.116∗∗∗
(0.006)

−0.086∗∗∗
(0.005)

−0.090∗∗∗
(0.006)

0.008
(0.006)

Bins: 9 −0.067∗∗∗
(0.004)

−0.114∗∗∗
(0.004)

0.054∗∗∗
(0.005)

−0.087∗∗∗
(0.004)

−0.121∗∗∗
(0.005)

0.121∗∗∗
(0.006)

−0.098∗∗∗
(0.005)

−0.100∗∗∗
(0.006)

0.005
(0.006)

Bins: 10 −0.063∗∗∗
(0.004)

−0.123∗∗∗
(0.004)

0.050∗∗∗
(0.005)

−0.095∗∗∗
(0.004)

−0.138∗∗∗
(0.005)

0.128∗∗∗
(0.006)

−0.098∗∗∗
(0.005)

−0.115∗∗∗
(0.006)

0.002
(0.006)

Num. from Bin: 2 −0.031∗∗∗
(0.003)

−0.050∗∗∗
(0.003)

0.028∗∗∗
(0.004)

−0.039∗∗∗
(0.004)

−0.057∗∗∗
(0.004)

0.034∗∗∗
(0.005)

−0.049∗∗∗
(0.004)

−0.064∗∗∗
(0.004)

0.001
(0.004)

Num. from Bin: 3 −0.043∗∗∗
(0.003)

−0.088∗∗∗
(0.003)

0.020∗∗∗
(0.004)

−0.063∗∗∗
(0.004)

−0.094∗∗∗
(0.004)

0.067∗∗∗
(0.005)

−0.077∗∗∗
(0.004)

−0.094∗∗∗
(0.004)

−0.009∗
(0.004)

Num. from Bin: 4 −0.056∗∗∗
(0.003)

−0.110∗∗∗
(0.003)

0.010∗∗∗
(0.004)

−0.085∗∗∗
(0.004)

−0.124∗∗∗
(0.004)

0.085∗∗∗
(0.005)

−0.096∗∗∗
(0.004)

−0.116∗∗∗
(0.004)

−0.015∗∗∗
(0.004)

Num. from Bin: 5 −0.071∗∗∗
(0.003)

−0.131∗∗∗
(0.003)

−0.004
(0.004)

−0.104∗∗∗
(0.004)

−0.152∗∗∗
(0.004)

0.092∗∗∗
(0.005)

−0.119∗∗∗
(0.004)

−0.132∗∗∗
(0.004)

−0.015∗∗∗
(0.004)

Avg. Bin Values 0.003∗
(0.002)

0.011∗∗∗
(0.002)

−0.001
(0.002)

0.004
(0.002)

0.010∗∗∗
(0.002)

−0.017∗∗∗
(0.003)

0.008∗∗∗
(0.002)

0.010∗∗∗
(0.003)

0.004
(0.003)

Constant 0.926∗∗∗
(0.004)

0.835∗∗∗
(0.004)

0.656∗∗∗
(0.005)

0.821∗∗∗
(0.005)

0.748∗∗∗
(0.005)

0.507∗∗∗
(0.006)

0.672∗∗∗
(0.005)

0.684∗∗∗
(0.006)

0.447∗∗∗
(0.006)

Observations 93,827 135,552 135,552 95,147 110,412 110,412 97,303 82,285 82,285
Adjusted R2 0.070 0.173 0.112 0.158 0.190 0.086 0.269 0.221 0.226

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Fig. 4. Optimizing GeoSIMEX Parameters.

R. Marty, et al. Development Engineering 4 (2019) 100038

11



Fig. 4 illustrates the trade off between the number of bins used and the number of observations drawn from each bin for extrapolations. The y-axis
on each chart represents the percentage of all simulations for which a given case was true (contained the correct θ=0 [red], θ=1 [green], or θ=1
with significance [blue] in the 95% confidence interval). The x-axis on each figure is the number of bins used for the GeoSIMEX procedure (i.e., 3C).
Three levels of spatial imprecision are shown, with the first column of charts being relatively low imprecision, increasing to high precision in the
final column of charts. Each row indicates a different number of observations being selected from each bin for use in back-extrapolation (1, 2, or 3
estimates).

Under all levels of spatial imprecision, increasing the number of bins reduces the ability of GeoSIMEX to capture the true coefficient in the 95%
confidence interval. Under low and medium levels of spatial imprecision (0 1

3 ), increasing the number of bins improves the ability of
GeoSIMEX to capture statistical significance. Changes are often largest under low numbers of bins. For example, under low spatial imprecision
(0 1

3 ), moving from using 3 bins to 4 bins (when only one estimate is taken from each bin) results in GeoSIMEX capturing the true coefficient
and significance 50% of the time to 65% of the time, while the ability of GeoSIMEX to capture the true coefficient drops from about 91% to 89%. In
addition, increasing the number of estimates taken from each bin generally increases the ability of GeoSIMEX to capture both the true coefficient and
statistical significance but weakens the ability of GeoSIMEX to capture the true coefficient.

To choose optimal parameters for this analysis (and, to guide future researchers), we calculate the percent of simulation iterations that GeoSIMEX
captures the true coefficient and significance across all levels of spatial imprecision, and identify the best parameters for each λ range. Table 5 shows
the results of this analysis.

Table 5
Optimal Parameters by Level of Spatial Imprecision.

λ Number of Bins Number from Bin GeoSIMEX

True True & Sig.

0–0.1 5 1 0.862 0.837
0.1–0.2 7 1 0.825 0.794
0.2–0.3 8 1 0.812 0.728
0.3–0.4 8 2 0.786 0.695
0.4–0.5 9 5 0.65 0.601
0.5–0.6 10 5 0.635 0.486
0.6–0.7 3 1 0.876 0.403
0.7–0.8 3 1 0.852 0.43
0.8–0.9 4 2 0.748 0.346
0.9–1 4 2 0.649 0.321

A.3. Simulation results: bias and standard errors

Fig. 5 examines how the bias in θ (y-axis) changes as a function of spatial imprecision (x-axis) under two scenarios. Four scenarios are shown
where the accuracy of assumptions about where aid is allocated differ. The first scenario (5a) illustrates how bias can increase as a function of spatial
imprecision when very inaccurate assumptions about where aid is allocated are made by the researcher; the fourth scenario (5b) illustrates bias when
the researcher makes very accurate assumptions about the spatial allocation of aid in cases of imprecision. Across all scenarios, GeoSIMEX models
tend to experience the least amount of bias, especially under conditions of high spatial imprecision.
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Fig. 5. Magnitude of Bias. Each line indicates the level of bias of each of three tested models (Naive OLS, Model Averaging, and GeoSIMEX). Regions around each line
indicate the 25th percentile (Naive and GeoSIMEX), while 25th percentiles are represented by error bars in the case of Model Averaging for ease of interpretation.
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Fig. 6. Variation in geoSIMEX Standard Errors.

In addition to reducing bias in θ, a key purpose of GeoSIMEX is to incorporate spatial uncertainty into model standard errors. Fig. 6a illustrates
how standard errors of aid coefficients increase across all model types—naive, model average and GeoSIMEX. As seen in this figure, GeoSIMEX
standard errors grow as the spatial imprecision of the source data increases, following similar trends to Monte Carlo model averaging (though with
larger variation, as is expected due to the addition of the back extrapolation step).

Fig. 6b shows the size of model standard errors as quality of aid allocation assumptions change. Larger X-axis values indicate a better assumption
being made by the researcher regarding how coarse aid is allocated to finder regions. Standard errors on the naive model get smaller as the accuracy
of assumptions improve. GeoSIMEX models also benefit from this reduction in standard error size as the accuracy of assumptions improve (though at
a slower rate due to the inclusion of spatial imprecision in standard error estimates).
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A.4. Performance of GeoSIMEX

Fig. 7. Performance of geoSIMEX, Model Average, and Naive Mode: True Coef (θ)= 1.
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Fig. 7 illustrates the performance of GeoSIMEX compared to model averaging and the naive model across spatial imprecision and accuracy of aid
allocation assumptions. Four cases are shown - where accuracy of assumptions about aid allocation are low (r=−1 - -0.5; 7a), relatively low
(r=−0.5 - 0; 7b), relatively high (r=0–0.5; 7c) and high (r=0.5–1; 7d). The X-axis on each figure represents increasing spatial imprecision, and
the Y-axis represents the percentage of simulation iterations for which each condition (represented by each line) was true. Each blue line represents
the percentage of times the GeoSIMEX model in particular parameter estimate for θ included the true θ (1) within the 95% confidence interval. The
blue dotted line represents when this was true and a significant finding was found. This is repeated for linear models (red lines) and Monte Carlo
model averaging (purple lines).

These figures highlight a key advantage of the GeoSIMEX procedure. As spatial imprecision increases, under both cases the ability for traditional
model averaging (purple) to identify the true coefficient becomes near or equal to 0. This is due to the fact that, at low levels of precision, Monte
Carlo models that do not back-extrapolate will inherently bias their results towards 0 - the attenuation bias referred to earlier in this piece.

Across both levels of assumption accuracy, GeoSIMEX provides similar rates of accuracy to model averaging and linear models for relatively
precise (λ ¡ 0.4) datasets. However, as λ values increase, GeoSIMEX retains it's ability to provide accurate parameter estimates at a rate higher than
any of the alternative modeling strategies presented here.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.deveng.2018.11.001.
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