565 research outputs found

    Two-Dimensional Synthetic Aperture Radiometry over Land Surface During Soil Moisture Experiment in 2003 (SMEX03)

    Get PDF
    Microwave radiometry at low frequencies (L-band, approx. 1.4 GHz) has been known as an optimal solution for remote sensing of soil moisture. However, the antenna size required to achieve an appropriate resolution from space has limited the development of spaceborne L-band radiometers. This problem can be addressed by interferometric technology called aperture synthesis. The Soil Moisture and Ocean Salinity (SMOS) mission will apply this technique to monitor global-scale surface parameters in the near future. The first airborne experiment using an aircraft prototype of this approach, the Two-Dimensional Synthetic Aperture Radiometer (2D-STAR), was performed in the Soil Moisture Experiment in 2003 (SMEX03). The L-band brightness temperature data acquired in Alabama by the 2DSTAR was compared with ground-based measurements of soil moisture and with C-band data collected by the Polarimetric Scanning Radiometer (PSR). Our results demonstrate a good response of the 2D-STAR brightness temperature to changes in surface wetness, both in agricultural and forest lands. The behavior of the horizontally polarized brightness temperature data with increasing view-angle over the forest area was noticeably different than over bare soil. The results from the comparison of 2D-STAR and PSR indicate a better response of the 2D-STAR to the surface wetness under both wet and dry conditions. Our results have important implications for the performance of the future SMOS mission

    A ranking of hydrological signatures based on their predictability in space

    Get PDF
    Hydrological signatures are now used for a wide range of purposes, including catchment classification, process exploration and hydrological model calibration. The recent boost in the popularity and number of signatures has however not been accompanied by the development of clear guidance on signature selection. Here we propose that exploring the predictability of signatures in space provides important insights into their drivers, their sensitivity to data uncertainties, and is hence useful for signature selection. We use three complementary approaches to compare and rank 15 commonly‐used signatures, which we evaluate in 671 US catchments from the CAMELS data set (Catchment Attributes and MEteorology for Large‐sample Studies). Firstly, we employ machine learning (random forests) to explore how attributes characterizing the climatic conditions, topography, land cover, soil and geology influence (or not) the signatures. Secondly, we use simulations of a conceptual hydrological model (Sacramento) to benchmark the random forest predictions. Thirdly, we take advantage of the large sample of CAMELS catchments to characterize the spatial auto‐correlation (using Moran's I) of the signature field. These three approaches lead to remarkably similar rankings of the signatures. We show i) that signatures with the noisiest spatial pattern tend to be poorly captured by hydrological simulations, ii) that their relationship to catchments attributes are elusive (in particular they are not correlated to climatic indices) and iii) that they are particularly sensitive to discharge uncertainties. We suggest that a better understanding of their drivers and better characterization of their uncertainties would increase their value in hydrological studies

    Testing and Modeling Ethernet Switches and Networks for Use in ATLAS High-level Triggers

    Get PDF
    The ATLAS second level trigger will use a multi-layered LAN network to transfer 5 Gbyte/s detector data from ~1500 buffers to a few hundred processors. A model of the network has been constructed to evaluate its performance. A key component of the network model is a model of an individual switch, reproducing the behavior measured in real devices. A small number of measurable parameters are used to model a variety of commercial Ethernet switches. Using parameters measured on real devices, the impact on the overall network performance is modeled. In the Atlas context, both 100 Mbit and Gigabit Ethernet links are required. A system is described which is capable of characterizing the behavior of commercial switches with the required number of nodes under traffic conditions resembling those to be encountered in the Atlas experiment. Fast Ethernet traffic is provided by a high density, custom built tester based on FPGAs, programmed in Handel-C and VHDL, while the Gigabit Ethernet traffic is generated using Alteon NICs with custom firmware. The system is currently being deployed with 32 100Mbit ports and 16 Gigabit ports, and will be expanded to ~256 nodes of 100 Mbit and ~50 GBE nodes

    Recent Advances in SMAP RFI Processing

    Get PDF
    The measurements made by the Soil Moisture Active/Passive (SMAP) mission are affected by the presence of Radio Frequency Interference (RFI) in the protected 1400-1427 MHz band. In SMAP data processing, the main protection against RFI is a sophisticated RFI detection algorithm which flags sub-samples in time and frequency that are contaminated by RFI and removes them before estimating the brightness temperature. This contribution presents two additional approaches that have been developed to address the RFI concern in SMAP. The first consists in locating sources of RFI; once located, it becomes possible to report RFI sources to spectrum management authorities, which can lead to less RFI being experienced by SMAP in the future. The second is a new RFI detection method that is based on detecting outliers in the spatial distribution of measured antenna temperatures

    Aquarius: The Instrument and Initial Results

    Get PDF
    Aquarius was launched on June 10, 2011 aboard the Aquarius/SAC-D observatory and the instrument has been operating continuously since the initial turned-on was completed on August 25. The initial observed antenna temperatures were close to predicted and the first salinity map was released in September. In order to map the ocean salinity field, Aquarius includes several special features such as the inclusion of a scatterometer to provide a roughness correction, measurement of the third Stokes parameter to correct for Faraday rotation, and fast sampling to mitigate the effects of RFI. This paper provides an overview of the instrument and an example of initial results. Details are covered in subsequent papers in the session on Aquariu

    Aquarius Radiometer Status

    Get PDF
    Aquarius was launched on June 10, 2011 as part of the Aquarius/SAC-D observatory and the instrument has been operating continuously since being turned on in August of the same year. The initial map of sea surface salinity was released one month later (September) and the quality of the retrieval has continuously improved since then. The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results

    Understanding consumer demand for new transport technologies and services, and implications for the future of mobility

    Full text link
    The transport sector is witnessing unprecedented levels of disruption. Privately owned cars that operate on internal combustion engines have been the dominant modes of passenger transport for much of the last century. However, recent advances in transport technologies and services, such as the development of autonomous vehicles, the emergence of shared mobility services, and the commercialization of alternative fuel vehicle technologies, promise to revolutionise how humans travel. The implications are profound: some have predicted the end of private car dependent Western societies, others have portended greater suburbanization than has ever been observed before. If transport systems are to fulfil current and future needs of different subpopulations, and satisfy short and long-term societal objectives, it is imperative that we comprehend the many factors that shape individual behaviour. This chapter introduces the technologies and services most likely to disrupt prevailing practices in the transport sector. We review past studies that have examined current and future demand for these new technologies and services, and their likely short and long-term impacts on extant mobility patterns. We conclude with a summary of what these new technologies and services might mean for the future of mobility.Comment: 15 pages, 0 figures, book chapte

    Correlations in STAR: interferometry and event structure

    Full text link
    STAR observes a complex picture of RHIC collisions where correlation effects of different origins -- initial state geometry, semi-hard scattering, hadronization, as well as final state interactions such as quantum intensity interference -- coexist. Presenting the measurements of flow, mini-jet deformation, modified hadronization, and the Hanbury Brown and Twiss effect, we trace the history of the system from the initial to the final state. The resulting picture is discussed in the context of identifying the relevant degrees of freedom and the likely equilibration mechanism.Comment: 8 pages, 6 figures, plenary talk at the 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, to appear in Journal of Physics G (http://www.iop.org

    Strangelet search at RHIC

    Full text link
    Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and downstream from the interaction point along the beam axis where particles with small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides information about neutral energy deposition as a function of transverse position in ZDCs. We report the preliminary results of strangelet search from a triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin

    Neutral Kaon Interferometry in Au+Au collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    We present the first statistically meaningful results from two-K0s interferometry in heavy-ion collisions. A model that takes the effect of the strong interaction into account has been used to fit the measured correlation function. The effects of single and coupled channel were explored. At the mean transverse mass m_T = 1.07 GeV, we obtain the values R = 4.09 +/- 0.46 (stat.) +/- 0.31 (sys) fm and lambda = 0.92 +/- 0.23 (stat) +/- 0.13 (sys), where R and lambda are the invariant radius and chaoticity parameters respectively. The results are qualitatively consistent with m_T systematics established with pions in a scenario characterized by a strong collective flow.Comment: 11 pages, 10 figure
    corecore