25 research outputs found

    CycSim—an online tool for exploring and experimenting with genome-scale metabolic models

    Get PDF
    Summary: CycSim is a web application dedicated to in silico experiments with genome-scale metabolic models coupled to the exploration of knowledge from BioCyc and KEGG. Specifically, CycSim supports the design of knockout experiments: simulation of growth phenotypes of single or multiple gene deletions mutants on specified media, comparison of these predictions with experimental phenotypes and direct visualization of both on metabolic maps. The web interface is designed for simplicity, putting constraint-based modelling techniques within easier reach of biologists. CycSim also functions as an online repository of genome-scale metabolic models

    SBML2LaTEX: Conversion of SBML files into human-readable reports

    Get PDF
    Summary: The XML-based Systems Biology Markup Language (SBML) has emerged as a standard for storage, communication and interchange of models in systems biology. As a machine-readable format XML is difficult for humans to read and understand. Many tools are available that visualize the reaction pathways stored in SBML files, but many components, e.g. unit declarations, complex kinetic equations or links to MIRIAM resources, are often not made visible in these diagrams. For a broader understanding of the models, support in scientific writing and error detection, a human-readable report of the complete model is needed. We present SBML2LaTEX, a Java-based stand-alone program to fill this gap. A convenient web service allows users to directly convert SBML to various formats, including DVI, LaTEX and PDF, and provides many settings for customization

    Menthol Suppresses Nicotinic Acetylcholine Receptor Functioning in Sensory Neurons via Allosteric Modulation

    Get PDF
    In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (−) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs

    Web services at the European Bioinformatics Institute-2009

    Get PDF
    The European Bioinformatics Institute (EMBL-EBI) has been providing access to mainstream databases and tools in bioinformatics since 1997. In addition to the traditional web form based interfaces, APIs exist for core data resources such as EMBL-Bank, Ensembl, UniProt, InterPro, PDB and ArrayExpress. These APIs are based on Web Services (SOAP/REST) interfaces that allow users to systematically access databases and analytical tools. From the user's point of view, these Web Services provide the same functionality as the browser-based forms. However, using the APIs frees the user from web page constraints and are ideal for the analysis of large batches of data, performing text-mining tasks and the casual or systematic evaluation of mathematical models in regulatory networks. Furthermore, these services are widespread and easy to use; require no prior knowledge of the technology and no more than basic experience in programming. In the following we wish to inform of new and updated services as well as briefly describe planned developments to be made available during the course of 2009–2010

    Food Use and Health Effects of Soybean and Sunflower Oils

    Get PDF
    This review provides a scientific assessment of current knowledge of health effects of soybean oil (SBO) and sunflower oil (SFO). SBO and SFO both contain high levels of polyunsaturated fatty acids (PUFA) (60.8 and 69%, respectively), with a PUFA:saturated fat ratio of 4.0 for SBO and 6.4 for SFO. SFO contains 69% C18:2n-6 and less than 0.1% C18:3n-3, while SBO contains 54% C18:2n-6 and 7.2% C18:3n-3. Thus, SFO and SBO each provide adequate amounts of C18:2n-6, but of the two, SBO provides C18:3n-3 with a C18:2n-6:C18:3n-3 ratio of 7.1. Epidemiological evidence has suggested an inverse relationship between the consumption of diets high in vegetable fat and blood pressure, although clinical findings have been inconclusive. Recent dietary guidelines suggest the desirability of decreasing consumption of total and saturated fat and cholesterol, an objective that can be achieved by substituting such oils as SFO and SBO for animal fats. Such changes have consistently resulted in decreased total and low-density-lipoprotein cholesterol, which is thought to be favorable with respect to decreasing risk of cardiovascular disease. Also, decreases in high-density-lipoprotein cholesterol have raised some concern. Use of vegetable oils such as SFO and SBO increases C18:2n-6, decreases C20:4n-6, and slightly elevated C20:5n-3 and C22:6n-3 in platelets, changes that slightly inhibit platelet generation of thromboxane and ex vivo aggregation. Whether chronic use of these oils will effectively block thrombosis at sites of vascular injury, inhibit pathologic platelet vascular interactions associated with atherosclerosis, or reduce the incidence of acute vascular occlusion in the coronary or cerebral circulation is uncertain. Linoleic acid is needed for normal immune response, and essential fatty acid (EFA) deficiency impairs B and T cell-mediated responses. SBO and SFO can provide adequate linoleic acid for maintenance of the immune response. Excess linoleic acid has supported tumor growth in animals, an effect not verified by data from diverse human studies of risk, incidence, or progression of cancers of the breast and colon. Areas yet to be investigated include the differential effects of n-6- and n-3-containing oil on tumor development in humans and whether shorter-chain n-3 PUFA of plant origin such as found in SBO will modulate these actions of linoleic acid, as has been shown for the longer-chain n-3 PUFA of marine oil

    GetBonNie for building, analyzing and sharing rule-based models

    No full text
    Summary: GetBonNie is a web-based application for building, analyzing and sharing rule-based models encoded in the BioNetGen language (BNGL). Tools accessible within the GetBonNie environment include (i) an applet for drawing graphs that correspond to BNGL code; (ii) a network-generation engine for translating a set of rules into a chemical reaction network; (iii) simulation engines that implement generate-first, on-the-fly and network-free methods for simulating rule-based models; and (iv) a database for sharing models, parameter values, annotations, simulation tasks and results

    Potentiation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site

    No full text
    Positive allosteric modulators of α7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of α7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of α7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of α7 nAChRs. The amino acids we have identified are located within the α-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC20 concentrations of acetylcholine to a tenth of the level seen with wild-type α7. Reference to homology models of the α7 nAChR, based on the 4Å structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four α-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABAA and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels

    A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper)

    Get PDF
    Neonicotinoids, such as imidacloprid, are nicotinic acetylcholine receptor (nAChR) agonists with potent insecticidal activity. Since its introduction in the early 1990s, imidacloprid has become one of the most extensively used insecticides for both crop protection and animal health applications. As with other classes of insecticides, resistance to neonicotinoids is a significant threat and has been identified in several pest species, including the brown planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. In this study, radioligand binding experiments have been conducted with whole-body membranes prepared from imidacloprid-susceptible and imidacloprid-resistant strains of N. lugens. The results reveal a much higher level of [(3)H]imidacloprid-specific binding to the susceptible strain than to the resistant strain (16.7 ± 1.0 and 0.34 ± 0.21 fmol/mg of protein, respectively). With the aim of understanding the molecular basis of imidacloprid resistance, five nAChR subunits (Nlα1–Nlα4 and Nlβ1) have been cloned from N. lugens.A comparison of nAChR subunit genes from imidacloprid-sensitive and imidacloprid-resistant populations has identified a single point mutation at a conserved position (Y151S) in two nAChR subunits, Nlα1 and Nlα3. A strong correlation between the frequency of the Y151S point mutation and the level of resistance to imidacloprid has been demonstrated by allele-specific PCR. By expression of hybrid nAChRs containing N. lugens α and rat β2 subunits, evidence was obtained that demonstrates that mutation Y151S is responsible for a substantial reduction in specific [(3)H]imidacloprid binding. This study provides direct evidence for the occurrence of target-site resistance to a neonicotinoid insecticide
    corecore