423 research outputs found

    Avant-propos

    Get PDF

    Unsupervised Detection of Planetary Craters by a Marked Point Process

    Get PDF
    With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features

    Automatic Extraction of Planetary Image Features

    Get PDF
    With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration

    Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria

    No full text
    International audienceA soil-vegetation-atmosphere transfer model coupled with a macroscale distributed hydrological model was used in order to simulate the water cycle for a large region in Bulgaria. To do so, an atmospheric forcing was built for two hydrological years (1 October 1995 to 30 September 1997), at an eight km resolution. It was based on the data available at the National Institute of Meteorology and Hydrology (NIMH) of Bulgaria. Atmospheric parameters were carefully checked and interpolated with a high level of detail in space and time (3-h step). Comparing computed Penman evapotranspiration versus observed pan evaporation validated the quality of the implemented forcing. The impact of the human activities on the rivers (especially hydropower or irrigation) was taken into account. Some improvements of the hydrometeorological model were made: for better simulation of summer riverflow, two additional reservoirs were added to simulate the slow component of the runoff. Those reservoirs were calibrated using the observed data of the 1st year, while the 2nd year was used for validation. 56 hydrologic stations and 12 dams were used for the model calibration while 41 rivergages were used for the validation of the model. The results compare well with the daily-observed discharges, with good results obtained over more than 25% of the rivergages. The simulated snow depth was compared to daily measurements at 174 stations and the evolution of the snow water equivalent was validated at 5 sites. The process of melting and refreezing of snow was found to be important on this region. The comparison of the normalized values of simulated versus measured soil moisture showed good correlation. The surface water budget shows large spatial variations due to the elevation influence on the precipitations, soil properties and vegetation variability. An inter annual difference was observed in the water cycle as the first year was more influenced by Mediterranean climate, while the second year was characterised by continental influence. Energy budget shows a dominating sensible heat component in summer, due to the fact that the water stress limits the evaporation. This study is a first step for the implementation of an operational hydrometeorological model that could be used for real time monitoring and forecast the water budget and the riverflow of Bulgaria

    What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?

    Get PDF
    The ocean contributes to regulating atmospheric CO2 levels, partly via variability in the fraction of primary production (PP) which is exported out of the surface layer (i.e. the e-ratio). Southern Ocean studies have found that, contrary to global scale analyses, an inverse relationship exists between e-ratio and PP. This relationship remains unexplained, with potential hypotheses being i) large export of dissolved organic carbon (DOC) in high PP areas, ii) strong surface microbial recycling in high PP regions and/ or iii) grazing mediated export varies inversely with PP. We find that the export of DOC has a limited influence in setting the negative e-ratio/PP relationship. However, we observed that at sites with low PP and high e-ratios, zooplankton mediated export is large and surface microbial abundance low suggesting that both are important drivers of the magnitude of the e-ratio in the Southern Ocean

    Molecular modeling and imaging of initial stages of cellulose fibril assembly: Evidence for a disordered intermediate stage

    No full text
    International audienceThe remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface. Molecular dynamics simulations on groups of six glucans, each originating from a position approximating its extrusion site, revealed initial formation of an uncrystallized aggregate of chains from which a protofibril arose spontaneously through a ratchet mechanism involving hydrogen bonds and van der Waals interactions between glucose monomers. Consistent with the predictions from the model, freeze-fracture transmission electron microscopy using improved methods revealed a hemispherical accumulation of material at points of origination of apparent cellulose fibrils on the external surface of the plasma membrane where rosette-type CSCs were also observed. Together the data support the possibility that a zone of uncrystallized chains on the plasma membrane surface buffers the predicted variable rates of cellulose polymerization from multiple catalytic subunits within the CSC and acts as a flexible hinge allowing the horizontal alignment of the crystalline cellulose fibrils relative to the cell wall
    • …
    corecore