801 research outputs found
On the filamentary environment of galaxies
The correlation between the large-scale distribution of galaxies and their
spectroscopic properties at z=1.5 is investigated using the Horizon MareNostrum
cosmological run.
We have extracted a large sample of 10^5 galaxies from this large
hydrodynamical simulation featuring standard galaxy formation physics. Spectral
synthesis is applied to these single stellar populations to generate spectra
and colours for all galaxies. We use the skeleton as a tracer of the cosmic web
and study how our galaxy catalogue depends on the distance to the skeleton. We
show that galaxies closer to the skeleton tend to be redder, but that the
effect is mostly due to the proximity of large haloes at the nodes of the
skeleton, rather than the filaments themselves.
This effects translate into a bimodality in the colour distribution of our
sample. The origin of this bimodality is investigated and seems to follow from
the ram pressure stripping of satellite galaxies within the more massive
clusters of the simulation.
The virtual catalogues (spectroscopical properties of the MareNostrum
galaxies at various redshifts) are available online at
http://www.iap.fr/users/pichon/MareNostrum/cataloguesComment: 18 pages, 27 figures, accepted for publication in MNRA
Recommended from our members
A statistical model for sea surface diurnal warming driven by numercial weather predictions fluxes and winds
A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors
Comparison of different spectral population models
We have compared simple stellar populations (SSPs) generated with different population synthesis tools: BC03, Vazdekis and Pegase.HR and different stellar libraries: ELODIE3.1, SteLib and MILES. We find that BC03/SteLib SSPs are biased toward solar metallicity, however Pegase.HR/ELODIE3.1 and Vazdekis/MILES are extremely consistent. The extensive coverage of the space of atmospheric parameters in the large stellar libraries allows precise synthesis for a large range of ages (0.1 .. 10 Gyr) and metallicities (-2 .. +0.4 dex) limited by the quality of the determination of stellar parameters (like temperature scale of the giants)
Differential stellar population models: how to reliably measure [Fe/H] and [alpha/Fe] in galaxies
We present differential stellar population models, which allow improved
determinations of the ages, iron and alpha-element abundances of old stellar
populations from spectral fitting. These new models are calibrated at solar
abundances using the predictions from classical, semi-empirical stellar
population models. We then use the predictive power of fully synthetic models
to compute predictions for different [Fe/H] and [alpha/Fe]. We show that these
new differential models provide remarkably accurate fits to the integrated
optical spectra of the bulge globular clusters NGC6528 and NGC6553, and that
the inferred [Fe/H] and [alpha/Fe] agree with values derived elsewhere from
stellar photometry and spectroscopy. The analysis of a small sample of SDSS
early-type galaxies further confirms that our alpha-enhanced models provide a
better fit to the spectra of massive ellipticals than the solar-scaled ones.
Our approach opens new opportunities for precision measurements of abundance
ratios in galaxies.Comment: 5 pages, 5 figures, MNRAS in pres
Galaxy merger histories and the role of merging in driving star formation at z>1
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We use Horizon-AGN, a hydrodynamical cosmological simulation, to explore the role of mergers in the evolution of massive (M > 10^10 MSun) galaxies around the epoch of peak cosmic star formation (1zR(4:1 3 are 'blue' (i.e. have significant associated star formation), the proportion of 'red' mergers increases rapidly at ztodays stellar mass was formed.Peer reviewe
Spectroscopic ages and metallicities of stellar populations: validation of full spectrum fitting
Fitting whole spectra at intermediate spectral resolution (R = 1000 -- 3000),
to derive physical properties of stellar populations, appears as an optimized
alternative to methods based on spectrophotometric indices: it uses all the
redundant information contained in the signal. This paper addresses the
validation of the method and it investigates the quality of the population
models together with the reliability of the fitting procedures. We are using
two algorithms: STECKMAP, a non-parametric regularized program and NBURSTS a
parametric non-linear minimization. We compare three spectral synthesis models
for single stellar populations: Pegase-HR, Galaxev (BC03) and Vazdekis/Miles,
and we analyse spectra of Galactic clusters whose populations are known from
studies of color-magnitude diagrams (CMD) and spectroscopy of individual stars.
We find that: (1) The quality of the models critically depends on the stellar
library they use. Pegase-HR and Vazdekis/Miles are consistent, while the
comparison between Pegase-HR and BC03 shows some systematics reflecting the
limitations of the stellar library (STELIB) used to generate the latter models;
(2) The two fitting programs are consistent; (3) For globular clusters and M67
spectra, the method restitutes metallicities in agreement with spectroscopy of
stars within 0.14 dex; (4) The spectroscopic ages are very sensitive to the
presence of a blue horizontal branch (BHB) or of blue stragglers. A BHB
morphology results in a young SSP-equivalent age. Fitting a free amount of blue
stars in addition to the SSP model to mimic the BHB improves and stabilizes the
fit and restores ages in agreement with CMDs studies. This method is
potentially able to disentangle age or BHB effects in extragalactic clusters.Comment: accepted in MNRAS; Full version available at
http://www-obs.univ-lyon1.fr/labo/perso/prugniel/mina/koleva.pd
- …