33 research outputs found

    Synthetic Biology Tools for Engineering Microbial Cells to Fight Superbugs

    Get PDF
    With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE). These bacteria can adapt to multiple antibiotics and transfer their resistance to other organisms; therefore, studies to find new therapeutic strategies are needed. One of these strategies is synthetic biology geared toward developing new antimicrobial therapies. Synthetic biology is founded on a solid and well-established theoretical framework that provides tools for conceptualizing, designing, and constructing synthetic biological systems. Recent developments in synthetic biology provide tools for engineering synthetic control systems in microbial cells. Applying protein engineering, DNA synthesis, and in silico design allows building metabolic pathways and biological circuits to control cellular behavior. Thus, synthetic biology advances have permitted the construction of communication systems between microorganisms where exogenous molecules can control specific population behaviors, induce intracellular signaling, and establish co-dependent networks of microorganisms

    Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos

    No full text
    Abstract Background Semiconductor Quantum dots (QDs) have become quite popular thanks to their properties and wide use in biological and biomedical studies. However, these same properties entail new challenges in understanding, predicting, and managing potential adverse health effects following exposure. Cadmium and selenium, which are the major components of the majority of quantum dots, are known to be acutely and chronically toxic to cells and organisms. Protecting the core of nanoparticles can, to some degree, control the toxicity related to cadmium and selenium leakage. Results This study successfully synthesized and characterized maltodextrin coated cadmium sulfide semiconductor nanoparticles. The results show that CdS-MD nanoparticles are cytotoxic and embryotoxic. CdS-MD nanoparticles in low concentrations (4.92 and 6.56 nM) lightly increased the number of HepG2 cell. A reduction in MDA-MB-231 cells was observed with concentrations higher than 4.92 nM in a dose response manner, while Caco-2 cells showed an important increase starting at 1.64 nM. CdS-MD nanoparticles induced cell death by apoptosis and necrosis in MDA-MD-231 cells starting at 8.20 nM concentrations in a dose response manner. The exposure of these cells to 11.48-14.76 nM of CdS-MD nanoparticles induced ROS production. The analysis of cell proliferation in MDA-MB-231 showed different effects. Low concentrations (1.64 nM) increased cell proliferation (6%) at 7 days (p 4.92 nM) increased cell proliferation in a dose response manner (15-30%) at 7 days. Exposures of chicken embryos to CdS-MD nanoparticles resulted in a dose-dependent increase in anomalies that, starting at 9.84 nM, centered on the heart, central nervous system, placodes, neural tube and somites. No toxic alterations were observed with concentrations of  Conclusions Our results indicate that CdS-MD nanoparticles induce cell death and alter cell proliferation in human cell lines at concentrations higher than 4.92 nM. We also demonstrated that they are embryotoxic. However, no toxic effects were observed with doses lower than 3.28 nM in neither cells nor chicken embryos. The CdS-MD nanoparticles used in this study can be potentially used in bio-imaging applications. However, further studies using mammalian species are required in order to discard more toxic effects.</p

    Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis

    Get PDF
    Over the last years, invasive infections caused by filamentous fungi have constituted a serious threat to public health worldwide. Aspergillus, Coccidioides, Mucorales (the most common filamentous fungi), and Candida auris (non-filamentous fungus) can cause infections in humans. They are able to cause critical life-threatening illnesses in immunosuppressed individuals, patients with HIV/AIDS, uncontrolled diabetes, hematological diseases, transplantation, and chemotherapy. In this review, we describe the available nanoformulations (both metallic and polymers-based nanoparticles) developed to increase efficacy and reduce the number of adverse effects after the administration of conventional antifungals. To treat aspergillosis and infections caused by Candida, multiple strategies have been used to develop new therapeutic alternatives, such as incorporating coating materials, complexes synthesized by green chemistry, or coupled with polymers. However, the therapeutic options for coccidioidomycosis and mucormycosis are limited; most of them are in the early stages of development. Therefore, more research needs to be performed to develop new therapeutic alternatives that contribute to the progress of this field

    The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design

    Get PDF
    The inappropriate use of antibiotics and an inadequate control of infections have led to the emergence of resistant strains which represent a major threat to public health and the global economy. Therefore, research and development of a new generation of antimicrobials to mitigate the spread of antibiotic resistance has become imperative. Current research and technology developments have promoted the improvement of antimicrobial agents that can selectively interact with a target site (e.g., a gene or a cellular process) or a specific pathogen. Antimicrobial peptides and metal nanoparticles exemplify a novel approach to treat infectious diseases. Nonetheless, combinatorial treatments have been recently considered as an excellent platform to design and develop the next generation of antibacterial agents. The combination of different drugs offers many advantages over their use as individual chemical moieties; these include a reduction in dosage of the individual drugs, fewer side effects compared to the monotherapy, reduced risk for the development of drug resistance, a better combined response compared to the effect of the individual drugs (synergistic effects), wide- spectrum antibacterial action, and the ability to attack simultaneously multiple target sites, in many occasions leading to an increased antibacterial effect. The selection of the appropriate combinatorial treatment is critical for the successful treatment of infections. Therefore, the design of combinatorial treatments provides a pathway to develop antimicrobial therapeutics with broad-spectrum antibacterial action, bactericidal instead of bacteriostatic mechanisms of action, and better efficacy against multidrug- resistant bacteria

    Conversion of banana peel into diverse valuable metabolites using an autochthonous Rhodotorula mucilaginosa strain

    Get PDF
    Low-cost substrates are an exciting alternative for bioprocesses; however, their complexity can affect microorganism metabolism with non-desirable outcomes. This work evaluated banana peel extract (BPE) as a growth medium compared to commercial Yeast-Malt (YM) broth in the native and non-conventional yeast Rhodotorula mucilaginosa UANL-001L. The production of carotenoids, fatty acids, and exopolysaccharides (EPS) was also analyzed. Biomass concentration (3.9 g/L) and growth rate (0.069 g/h) of Rhodotorula mucilaginosa UANL-001L were obtained at 200 g/L of BPE. Yields per gram of dry biomass for carotenoids (317 µg/g) and fatty acids (0.55 g/g) showed the best results in 150 g/L of BPE, while 298 µg/g and 0.46 mg/g, respectively, were obtained in the YM broth. The highest yield of EPS was observed in 50 g/L of BPE, a two-fold increase (160.1 mg/g) compared to the YM broth (76.3 mg/g). The fatty acid characterization showed that 100 g/L of BPE produced 400% more unsaturated compounds (e.g., oleic and ricinoleic acid) than the YM broth. Altogether, these results indicate that BPE is a suitable medium for producing high-value products with potential industrial applications

    Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance

    No full text
    Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections
    corecore