83,905 research outputs found
Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering
We present data on the magnetic and magneto-elastic coupling in the hexagonal
multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization
and thermal expansion measurements. We measured the magnon dispersion along the
main symmetry directions and used this data to determine the principal exchange
parameters from a spin-wave model. An analysis of the magnetic anisotropy in
terms of the crystal field acting on the Mn is presented. We compare the
results for LuMnO3 with data on other hexagonal RMnO3 compounds.Comment: 7 pages, 8 figures, typo correcte
Carbon stars in the IRTS survey
We have identified 139 cool carbon stars in the near-infrared
spectro-photometric survey of the InfraRed Telescope in Space (IRTS) from the
conspicuous presence of molecular absorption bands at 1.8, 3.1 and 3.8 microns.
Among them 14 are new, bright (K ~ 4.0-7.0), carbon stars. We find a trend
relating the 3.1 microns band strength to the K-L' color index, which is known
to correlate with mass-loss rate. This could be an effect of a relation between
the depth of the 3.1 microns feature and the degree of development of the
extended stellar atmosphere where dust starts to form.Comment: accepted by the PASP; December 7, 200
A model for atomic and molecular interstellar gas: The Meudon PDR code
We present the revised ``Meudon'' model of Photon Dominated Region (PDR
code), presently available on the web under the Gnu Public Licence at:
http://aristote.obspm.fr/MIS. General organisation of the code is described
down to a level that should allow most observers to use it as an interpretation
tool with minimal help from our part. Two grids of models, one for low
excitation diffuse clouds and one for dense highly illuminated clouds, are
discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup
Evidence for long-lived quasiparticles trapped in superconducting point contacts
We have observed that the supercurrent across phase-biased, highly
transmitting atomic size contacts is strongly reduced within a broad phase
interval around {\pi}. We attribute this effect to quasiparticle trapping in
one of the discrete sub-gap Andreev bound states formed at the contact.
Trapping occurs essentially when the Andreev energy is smaller than half the
superconducting gap {\Delta}, a situation in which the lifetime of trapped
quasiparticles is found to exceed 100 \mus. The origin of this sharp energy
threshold is presently not understood.Comment: Article (5 pages) AND Supplemental material (14 pages). To be
published in Physical Review Letter
Spectral densities for hot QCD plasmas in a leading log approximation
We compute the spectral densities of and in high
temperature QCD plasmas at small frequency and momentum,\, . The leading log Boltzmann equation is reformulated as a Fokker Planck
equation with non-trivial boundary conditions, and the resulting partial
differential equation is solved numerically in momentum space. The spectral
densities of the current, shear, sound, and bulk channels exhibit a smooth
transition from free streaming quasi-particles to ideal hydrodynamics. This
transition is analyzed with conformal and non-conformal second order
hydrodynamics, and a second order diffusion equation. We determine all of the
second order transport coefficients which characterize the linear response in
the hydrodynamic regime.Comment: 39 pages, 6 figures. v3 contains an analysis of the bulk channel with
non-conformal hydrodynamics. Otherwise no significant change
Synchronous Behavior of Two Coupled Electronic Neurons
We report on experimental studies of synchronization phenomena in a pair of
analog electronic neurons (ENs). The ENs were designed to reproduce the
observed membrane voltage oscillations of isolated biological neurons from the
stomatogastric ganglion of the California spiny lobster Panulirus interruptus.
The ENs are simple analog circuits which integrate four dimensional
differential equations representing fast and slow subcellular mechanisms that
produce the characteristic regular/chaotic spiking-bursting behavior of these
cells. In this paper we study their dynamical behavior as we couple them in the
same configurations as we have done for their counterpart biological neurons.
The interconnections we use for these neural oscillators are both direct
electrical connections and excitatory and inhibitory chemical connections: each
realized by analog circuitry and suggested by biological examples. We provide
here quantitative evidence that the ENs and the biological neurons behave
similarly when coupled in the same manner. They each display well defined
bifurcations in their mutual synchronization and regularization. We report
briefly on an experiment on coupled biological neurons and four dimensional ENs
which provides further ground for testing the validity of our numerical and
electronic models of individual neural behavior. Our experiments as a whole
present interesting new examples of regularization and synchronization in
coupled nonlinear oscillators.Comment: 26 pages, 10 figure
Incommensurate phonon anomaly and the nature of charge density waves in cuprates
While charge density wave (CDW) instabilities are ubiquitous to
superconducting cuprates, the different ordering wavevectors in various cuprate
families have hampered a unified description of the CDW formation mechanism.
Here we investigate the temperature dependence of the low energy phonons in the
canonical CDW ordered cuprate LaBaCuO. We discover
that the phonon softening wavevector associated with CDW correlations becomes
temperature dependent in the high-temperature precursor phase and changes from
a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering
transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature
behavior shows that "214"-type cuprates can host CDW correlations at a similar
wavevector to previously reported CDW correlations in non-"214"-type cuprates
such as YBaCuO. This indicates that cuprate CDWs may
arise from the same underlying instability despite their apparently different
low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of
supplementary materia
Time-reversal symmetry breaking in circuit-QED based photon lattices
Breaking time-reversal symmetry is a prerequisite for accessing certain
interesting many-body states such as fractional quantum Hall states. For
polaritons, charge neutrality prevents magnetic fields from providing a direct
symmetry breaking mechanism and similar to the situation in ultracold atomic
gases, an effective magnetic field has to be synthesized. We show that in the
circuit QED architecture, this can be achieved by inserting simple
superconducting circuits into the resonator junctions. In the presence of such
coupling elements, constant parallel magnetic and electric fields suffice to
break time-reversal symmetry. We support these theoretical predictions with
numerical simulations for realistic sample parameters, specify general
conditions under which time-reversal is broken, and discuss the application to
chiral Fock state transfer, an on-chip circulator, and tunable band structure
for the Kagome lattice.Comment: minor revisions, version published in PRA; 19 pages, 13 figures, 2
table
Galaxy Selection and Clustering and Lyman alpha Absorber Identification
The effects of galaxy selection on our ability to constrain the nature of
weak Ly\alpha absorbers at low redshift are explored. Current observations
indicate the existence of a population of gas-rich, low surface brightness
(LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha
absorption. Absorption arising in LSB galaxies may be attributed to HSB
galaxies at larger impact parameters from quasar lines of sight, so that the
observed absorption cross sections of galaxies may seem unreasonably large.
Thus it is not possible to rule out scenarios where LSB galaxies make
substantial contributions to Ly\alpha absorption using direct observations.
Less direct tests, where observational selection effects are taken into account
using simulations, should make it possible to determine the nature of Ly\alpha
absorbers by observing a sample of ~100 galaxies around quasar lines of sight
with well-defined selection criteria. Such tests, which involve comparing
simulated and observed plots of the unidentified absorber fractions and
absorbing galaxy fractions versus impact parameter, can distinguish between
scenarios where absorbers arise in particular galaxies and those where
absorbers arise in gas tracing the large scale galaxy distribution. Care must
be taken to minimize selection effects even when using these tests. Results
from such tests are likely to depend upon the limiting neutral hydrogen column
density. While not enough data are currently available to make a strong
conclusion about the nature of moderately weak absorbers, evidence is seen that
such absorbers arise in gas that is around or between galaxies that are often
not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa
Measurement of energy and angular distributions of secondary ions in the sputtering of gold by swift Au-n clusters: Study of emission mechanisms
Energy and angular distributions of negative ions (Au–, Au2-, Au3-, and Au5-) emitted from gold target bombarded by Au, Au4, and Au9 projectiles at 200 keV/atom were measured with a multipixel position sensitive detector. The angular distributions are symmetrical with respect to the normal to the target surface and forward peaked. They depend on the type of emitted ions, on the emission energy, and on the projectile size. More forward directed emission is observed with Au9 projectiles. The secondary ion energy distributions obtained with Au and Au4 projectiles are well reproduced by a sum of linear collision cascades and thermal spike processes. However, in the case of Au9 projectiles the energy distributions are better described by using a simple spike model with two different average temperature regimes: the first one corresponds to high emission energy occurring in the early stage of the whole process, and the second to the low energy component
- …