83,905 research outputs found

    Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering

    Full text link
    We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.Comment: 7 pages, 8 figures, typo correcte

    Carbon stars in the IRTS survey

    Full text link
    We have identified 139 cool carbon stars in the near-infrared spectro-photometric survey of the InfraRed Telescope in Space (IRTS) from the conspicuous presence of molecular absorption bands at 1.8, 3.1 and 3.8 microns. Among them 14 are new, bright (K ~ 4.0-7.0), carbon stars. We find a trend relating the 3.1 microns band strength to the K-L' color index, which is known to correlate with mass-loss rate. This could be an effect of a relation between the depth of the 3.1 microns feature and the degree of development of the extended stellar atmosphere where dust starts to form.Comment: accepted by the PASP; December 7, 200

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup

    Evidence for long-lived quasiparticles trapped in superconducting point contacts

    Get PDF
    We have observed that the supercurrent across phase-biased, highly transmitting atomic size contacts is strongly reduced within a broad phase interval around {\pi}. We attribute this effect to quasiparticle trapping in one of the discrete sub-gap Andreev bound states formed at the contact. Trapping occurs essentially when the Andreev energy is smaller than half the superconducting gap {\Delta}, a situation in which the lifetime of trapped quasiparticles is found to exceed 100 \mus. The origin of this sharp energy threshold is presently not understood.Comment: Article (5 pages) AND Supplemental material (14 pages). To be published in Physical Review Letter

    Spectral densities for hot QCD plasmas in a leading log approximation

    Full text link
    We compute the spectral densities of TμνT^{\mu\nu} and JμJ^{\mu} in high temperature QCD plasmas at small frequency and momentum,\, ω,kg4T\omega,k \sim g^4 T. The leading log Boltzmann equation is reformulated as a Fokker Planck equation with non-trivial boundary conditions, and the resulting partial differential equation is solved numerically in momentum space. The spectral densities of the current, shear, sound, and bulk channels exhibit a smooth transition from free streaming quasi-particles to ideal hydrodynamics. This transition is analyzed with conformal and non-conformal second order hydrodynamics, and a second order diffusion equation. We determine all of the second order transport coefficients which characterize the linear response in the hydrodynamic regime.Comment: 39 pages, 6 figures. v3 contains an analysis of the bulk channel with non-conformal hydrodynamics. Otherwise no significant change

    Synchronous Behavior of Two Coupled Electronic Neurons

    Full text link
    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four dimensional ENs which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators.Comment: 26 pages, 10 figure

    Incommensurate phonon anomaly and the nature of charge density waves in cuprates

    Get PDF
    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wavevectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here we investigate the temperature dependence of the low energy phonons in the canonical CDW ordered cuprate La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}. We discover that the phonon softening wavevector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature behavior shows that "214"-type cuprates can host CDW correlations at a similar wavevector to previously reported CDW correlations in non-"214"-type cuprates such as YBa2_{2}Cu3_{3}O6+δ_{6+\delta}. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of supplementary materia

    Time-reversal symmetry breaking in circuit-QED based photon lattices

    Full text link
    Breaking time-reversal symmetry is a prerequisite for accessing certain interesting many-body states such as fractional quantum Hall states. For polaritons, charge neutrality prevents magnetic fields from providing a direct symmetry breaking mechanism and similar to the situation in ultracold atomic gases, an effective magnetic field has to be synthesized. We show that in the circuit QED architecture, this can be achieved by inserting simple superconducting circuits into the resonator junctions. In the presence of such coupling elements, constant parallel magnetic and electric fields suffice to break time-reversal symmetry. We support these theoretical predictions with numerical simulations for realistic sample parameters, specify general conditions under which time-reversal is broken, and discuss the application to chiral Fock state transfer, an on-chip circulator, and tunable band structure for the Kagome lattice.Comment: minor revisions, version published in PRA; 19 pages, 13 figures, 2 table

    Galaxy Selection and Clustering and Lyman alpha Absorber Identification

    Full text link
    The effects of galaxy selection on our ability to constrain the nature of weak Ly\alpha absorbers at low redshift are explored. Current observations indicate the existence of a population of gas-rich, low surface brightness (LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha absorption. Absorption arising in LSB galaxies may be attributed to HSB galaxies at larger impact parameters from quasar lines of sight, so that the observed absorption cross sections of galaxies may seem unreasonably large. Thus it is not possible to rule out scenarios where LSB galaxies make substantial contributions to Ly\alpha absorption using direct observations. Less direct tests, where observational selection effects are taken into account using simulations, should make it possible to determine the nature of Ly\alpha absorbers by observing a sample of ~100 galaxies around quasar lines of sight with well-defined selection criteria. Such tests, which involve comparing simulated and observed plots of the unidentified absorber fractions and absorbing galaxy fractions versus impact parameter, can distinguish between scenarios where absorbers arise in particular galaxies and those where absorbers arise in gas tracing the large scale galaxy distribution. Care must be taken to minimize selection effects even when using these tests. Results from such tests are likely to depend upon the limiting neutral hydrogen column density. While not enough data are currently available to make a strong conclusion about the nature of moderately weak absorbers, evidence is seen that such absorbers arise in gas that is around or between galaxies that are often not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa

    Measurement of energy and angular distributions of secondary ions in the sputtering of gold by swift Au-n clusters: Study of emission mechanisms

    Get PDF
    Energy and angular distributions of negative ions (Au–, Au2-, Au3-, and Au5-) emitted from gold target bombarded by Au, Au4, and Au9 projectiles at 200 keV/atom were measured with a multipixel position sensitive detector. The angular distributions are symmetrical with respect to the normal to the target surface and forward peaked. They depend on the type of emitted ions, on the emission energy, and on the projectile size. More forward directed emission is observed with Au9 projectiles. The secondary ion energy distributions obtained with Au and Au4 projectiles are well reproduced by a sum of linear collision cascades and thermal spike processes. However, in the case of Au9 projectiles the energy distributions are better described by using a simple spike model with two different average temperature regimes: the first one corresponds to high emission energy occurring in the early stage of the whole process, and the second to the low energy component
    corecore