5,579 research outputs found
One step multiderivative methods for first order ordinary differential equations
A family of one-step multiderivative methods based on Padé approximants to the exponential function is developed.
The methods are extrapolated and analysed for use in PECE mode.
Error constants and stability intervals are calculated and the combinations compared with well known linear multi-step combinations and combinations using high accuracy Newton-Cotes quadrature formulas as correctors.
w926020
The ion motion in self-modulated plasma wakefield accelerators
The effects of plasma ion motion in self-modulated plasma based accelerators
is examined. An analytical model describing ion motion in the narrow beam limit
is developed, and confirmed through multi-dimensional particle-in-cell
simulations. It is shown that the ion motion can lead to the early saturation
of the self-modulation instability, and to the suppression of the accelerating
gradients. This can reduce the total energy that can be transformed into
kinetic energy of accelerated particles. For the parameters of future
proton-driven plasma accelerator experiments, the ion dynamics can have a
strong impact. Possible methods to mitigate the effects of the ion motion in
future experiments are demonstrated.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let
Isomorphic classical molecular dynamics model for an excess electron in a supercritical fluid
Ring polymer molecular dynamics (RPMD) is used to directly simulate the
dynamics of an excess electron in a supercritical fluid over a broad range of
densities. The accuracy of the RPMD model is tested against numerically exact
path integral statistics through the use of analytical continuation techniques.
At low fluid densities, the RPMD model substantially underestimates the
contribution of delocalized states to the dynamics of the excess electron.
However, with increasing solvent density, the RPMD model improves, nearly
satisfying analytical continuation constraints at densities approaching those
of typical liquids. In the high density regime, quantum dispersion
substantially decreases the self-diffusion of the solvated electron.
In this regime where the dynamics of the electron is strongly coupled to the
dynamics of the atoms in the fluid, trajectories that can reveal diffusive
motion of the electron are long in comparison to .Comment: 24 pages, 4 figure
An Investigation into the Type, Incidence, and Prophylaxis of Gestational Anaemia in an Industrial Population, Based on a Study of Aetiological Factors and Normal Blood Values in Pregnancy
Abstract Not Provided
On Tamm's problem in the Vavilov-Cherenkov radiation theory
We analyse the well-known Tamm problem treating the charge motion on a finite
space interval with the velocity exceeding light velocity in medium. By
comparing Tamm's formulae with the exact ones we prove that former do not
properly describe Cherenkov radiation terms. We also investigate Tamm's formula
cos(theta)=1/(beta n) defining the position of maximum of the field strengths
Fourier components for the infinite uniform motion of a charge. Numerical
analysis of the Fourier components of field strengths shows that they have a
pronounced maximum at cos(theta)=1/(beta n) only for the charge motion on the
infinitely small interval. As the latter grows, many maxima appear. For the
charge motion on an infinite interval there is infinite number of maxima of the
same amplitude. The quantum analysis of Tamm's formula leads to the same
results.Comment: 28 pages, 8 figures, to be published in J.Phys.D:Appl.Phy
ELKO Spinor Fields: Lagrangians for Gravity derived from Supergravity
Dual-helicity eigenspinors of the charge conjugation operator (ELKO spinor
fields) belong -- together with Majorana spinor fields -- to a wider class of
spinor fields, the so-called flagpole spinor fields, corresponding to the
class-(5), according to Lounesto spinor field classification based on the
relations and values taken by their associated bilinear covariants. There
exists only six such disjoint classes: the first three corresponding to Dirac
spinor fields, and the other three respectively corresponding to flagpole,
flag-dipole and Weyl spinor fields. Using the mapping from ELKO spinor fields
to the three classes Dirac spinor fields, it is shown that the
Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived
from the Quadratic Spinor Lagrangian (QSL), as the prime Lagrangian for
supergravity. The Holst action is related to the Ashtekar's quantum gravity
formulation. To each one of these classes, there corresponds a unique kind of
action for a covariant gravity theory. Furthermore we consider the necessary
and sufficient conditions to map Dirac spinor fields (DSFs) to ELKO, in order
to naturally extend the Standard Model to spinor fields possessing mass
dimension one. As ELKO is a prime candidate to describe dark matter and can be
obtained from the DSFs, via a mapping explicitly constructed that does not
preserve spinor field classes, we prove that in particular the
Einstein-Hilbert, Einstein-Palatini, and Holst actions can be derived from the
QSL, as a fundamental Lagrangian for supergravity, via ELKO spinor fields. The
geometric meaning of the mass dimension-transmuting operator - leading ELKO
Lagrangian into the Dirac Lagrangian - is also pointed out, together with its
relationship to the instanton Hopf fibration.Comment: 11 pages, RevTeX, accepted for publication in
Int.J.Geom.Meth.Mod.Phys. (2009
Nitrogen and phosphorus limitation of oceanic microbial growth during spring in the Gulf of Aqaba
Bioassay experiments were performed to identify how growth of key groups within the microbial community was simultaneously limited by nutrient (nitrogen and phosphorus) availability during spring in the Gulf of Aqaba's oceanic waters. Measurements of chlorophyll a (chl a) concentration and fast repetition rate (FRR) fluorescence generally demonstrated that growth of obligate phototrophic phytoplankton was co-limited by N and P and growth of facultative aerobic anoxygenic photoheterotropic (AAP) bacteria was limited by N. Phytoplankton exhibited an increase in chl a biomass over 24 to 48 h upon relief of nutrient limitation. This response coincided with an increase in photosystem II (PSII) photochemical efficiency (F v /F m), but was preceded (within 24 h) by a decrease in effective absorption crosssection (σPSII) and electron turnover time (τ). A similar response for τ and bacterio-chl a was observed for the AAPs. Consistent with the up-regulation of PSII activity with FRR fluorescence were observations of newly synthesized PSII reaction centers via low temperature (77K) fluorescence spectroscopy for addition of N (and N + P). Flow cytometry revealed that the chl a and thus FRR fluorescence responses were partly driven by the picophytoplankton (æ10 μm) community, and in particular Synechococcus. Productivity of obligate heterotrophic bacteria exhibited the greatest increase in response to a natural (deep water) treatment, but only a small increase in response to N and P addition, demonstrating the importance of additional substrates (most likely dissolved organic carbon) in moderating the heterotrophs. These data support previous observations that the microbial community response (autotrophy relative to heterotrophy) is critically dependent upon the nature of transient nutrient enrichment. © Inter-Research 2009
AF-algebras and topology of mapping tori
A covariant functor from the category of mapping tori to a category of
AF-algebras is constructed; the functor takes continuous maps between such
manifolds to stable homomorphisms between the corresponding AF-algebras. We use
this functor to develop an obstruction theory for the torus bundles of
dimension 2, 3 and 4.Comment: to appear Czechoslovak Math.
- …