Ring polymer molecular dynamics (RPMD) is used to directly simulate the
dynamics of an excess electron in a supercritical fluid over a broad range of
densities. The accuracy of the RPMD model is tested against numerically exact
path integral statistics through the use of analytical continuation techniques.
At low fluid densities, the RPMD model substantially underestimates the
contribution of delocalized states to the dynamics of the excess electron.
However, with increasing solvent density, the RPMD model improves, nearly
satisfying analytical continuation constraints at densities approaching those
of typical liquids. In the high density regime, quantum dispersion
substantially decreases the self-diffusion of the solvated electron.
In this regime where the dynamics of the electron is strongly coupled to the
dynamics of the atoms in the fluid, trajectories that can reveal diffusive
motion of the electron are long in comparison to βℏ.Comment: 24 pages, 4 figure