1,586 research outputs found

    Perturbative nonequilibrium dynamics of phase transitions in an expanding universe

    Get PDF
    A complete set of Feynman rules is derived, which permits a perturbative description of the nonequilibrium dynamics of a symmetry-breaking phase transition in λϕ4\lambda\phi^4 theory in an expanding universe. In contrast to a naive expansion in powers of the coupling constant, this approximation scheme provides for (a) a description of the nonequilibrium state in terms of its own finite-width quasiparticle excitations, thus correctly incorporating dissipative effects in low-order calculations, and (b) the emergence from a symmetric initial state of a final state exhibiting the properties of spontaneous symmetry breaking, while maintaining the constraint ≡0\equiv 0. Earlier work on dissipative perturbation theory and spontaneous symmetry breaking in Minkowski spacetime is reviewed. The central problem addressed is the construction of a perturbative approximation scheme which treats the initial symmetric state in terms of the field ϕ\phi, while the state that emerges at later times is treated in terms of a field ζ\zeta, linearly related to ϕ2\phi^2. The connection between early and late times involves an infinite sequence of composite propagators. Explicit one-loop calculations are given of the gap equations that determine quasiparticle masses and of the equation of motion for and the renormalization of these equations is described. The perturbation series needed to describe the symmetric and broken-symmetry states are not equivalent, and this leads to ambiguities intrinsic to any perturbative approach. These ambiguities are discussed in detail and a systematic procedure for matching the two approximations is described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review

    Nonequilibrium perturbation theory for complex scalar fields

    Full text link
    Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle occupation numbers which evolve with the changing state of the field system, in contrast to standard perturbation theory, where these occupation numbers are frozen at their initial values. The evolution equation of the occupation numbers can be cast approximately in the form of a Boltzmann equation. Particular attention is given to the effects of a non-zero chemical potential, and it is found that the thermal masses and decay widths of quasiparticle modes are different for particles and antiparticles.Comment: 15 pages using RevTeX; 2 figures in 1 Postscript file; Submitted to Phys. Rev.

    An Analytic Equation of State for Ising-like Models

    Get PDF
    Using an Environmentally Friendly Renormalization we derive, from an underlying field theory representation, a formal expression for the equation of state, y=f(x)y=f(x), that exhibits all desired asymptotic and analyticity properties in the three limits x→0x\to 0, x→∞x\to \infty and x→−1x\to -1. The only necessary inputs are the Wilson functions γλ\gamma_\lambda, ÎłÏ•\gamma_\phi and ÎłÏ•2\gamma_{\phi^2}, associated with a renormalization of the transverse vertex functions. These Wilson functions exhibit a crossover between the Wilson-Fisher fixed point and the fixed point that controls the coexistence curve. Restricting to the case N=1, we derive a one-loop equation of state for 2<d<42< d<4 naturally parameterized by a ratio of non-linear scaling fields. For d=3d=3 we show that a non-parameterized analytic form can be deduced. Various asymptotic amplitudes are calculated directly from the equation of state in all three asymptotic limits of interest and comparison made with known results. By positing a scaling form for the equation of state inspired by the one-loop result, but adjusted to fit the known values of the critical exponents, we obtain better agreement with known asymptotic amplitudes.Comment: 10 pages, 2 figure

    Irradiated brown dwarfs

    Full text link
    We have observed the post common envelope binary WD0137-349 in the near infrared JJ, HH and KK bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.Comment: 5 pages, 2 figures. Proceedings from "Brown dwarfs come of age" meeting in Fuerteventura 201

    Critical-point scaling function for the specific heat of a Ginzburg-Landau superconductor

    Full text link
    If the zero-field transition in high temperature superconductors such as YBa_2Cu_3O_7-\delta is a critical point in the universality class of the 3-dimensional XY model, then the general theory of critical phenomena predicts the existence of a critical region in which thermodynamic functions have a characteristic scaling form. We report the first attempt to calculate the universal scaling function associated with the specific heat, for which experimental data have become available in recent years. Scaling behaviour is extracted from a renormalization-group analysis, and the 1/N expansion is adopted as a means of approximation. The estimated scaling function is qualitatively similar to that observed experimentally, and also to the lowest-Landau-level scaling function used by some authors to provide an alternative interpretation of the same data. Unfortunately, the 1/N expansion is not sufficiently reliable at small values of N for a quantitative fit to be feasible.Comment: 20 pages; 4 figure

    Scaling in high-temperature superconductors

    Full text link
    A Hartree approximation is used to study the interplay of two kinds of scaling which arise in high-temperature superconductors, namely critical-point scaling and that due to the confinement of electron pairs to their lowest Landau level in the presence of an applied magnetic field. In the neighbourhood of the zero-field critical point, thermodynamic functions scale with the scaling variable (T−Tc2(B))/B1/2Îœ(T-T_{c2}(B))/B^{1/2\nu}, which differs from the variable (T−Tc(0))/B1/2Îœ(T - T_c(0))/B^{1/2\nu} suggested by the gaussian approximation. Lowest-Landau-level (LLL) scaling occurs in a region of high field surrounding the upper critical field line but not in the vicinity of the zero-field transition. For YBaCuO in particular, a field of at least 10 T is needed to observe LLL scaling. These results are consistent with a range of recent experimental measurements of the magnetization, transport properties and, especially, the specific heat of high-TcT_c materials.Comment: 22 pages + 1 figure appended as postscript fil

    Critical behaviour of the Ginzburg-Landau model in the type II region

    Get PDF
    We study the critical behaviour of the three-dimensional U(1) gauge+Higgs theory (Ginzburg-Landau model) at large scalar self-coupling \lambda (``type II region'') by measuring various correlation lengths as well as the Abrikosov-Nielsen-Olesen vortex tension. We identify different scaling regions as the transition is approached from below, and carry out detailed comparisons with the criticality of the 3d O(2) symmetric scalar theory.Comment: Lattice2001(higgssusy), 3 page

    WD0837+185:the formation and evolution of an extreme mass ratio white dwarf-brown dwarf binary in Praesepe

    Full text link
    There is a striking and unexplained dearth of brown dwarf companions in close orbits (< 3AU) around stars more massive than the Sun, in stark contrast to the frequency of stellar and planetary companions. Although rare and relatively short-lived, these systems leave detectable evolutionary end points in the form of white dwarf - brown dwarf binaries and these remnants can offer unique insights into the births and deaths of their parent systems. We present the discovery of a close (orbital separation ~ 0.006 AU) substellar companion to a massive white dwarf member of the Praesepe star cluster. Using the cluster age and the mass of the white dwarf we constrain the mass of the white dwarf progenitor star to lie in the range 3.5 - 3.7 Msun (B9). The high mass of the white dwarf means the substellar companion must have been engulfed by the B star's envelope while it was on the late asymptotic giant branch (AGB). Hence, the initial separation of the system was ~2 AU, with common envelope evolution reducing the separation to its current value. The initial and final orbital separations allow us to constrain the combination of the common envelope efficiency (alpha) and binding energy parameters (lambda) for the AGB star to alpha lambda ~3. We examine the various formation scenarios and conclude that the substellar object was most likely to have been captured by the white dwarf progenitor early in the life of the cluster, rather than forming in situ.Comment: Accepted for publication in ApJ

    Photometric Variability and Rotation in Magnetic White Dwarfs

    Get PDF
    We present a search for long term (months—years) photometric variability in a sample of ten isolated magnetic white dwarfs using observations taken with the Liverpool Robotic Telescope between March 2005 and January 2007. These stars had previously been found to be photometrically stable on short (hours—one week) timescales [1]. We construct differential light curves for each target and then use CLEAN and Lomb‐Scargle periodograms to determine any periodicity that may be present. Photometric variability is detected in two of the targets during the observed timescale—G 240–72 and G 227–28. We find no variability in the remaining eight targets above the 1% level. Finally, we search for any correlations between the spin periods and intrinsic physical properties of magnetic white dwarfs, such as the magnetic field strength, temperature, mass and age
    • 

    corecore