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Using an Environmentally Friendly Renormalization we derive, from an underlying field theory
representation, a formal expression for the equation of state, y = f(x), that exhibits all desired
asymptotic and analyticity properties in the three limits x → 0, x → ∞ and x → −1. The only
necessary inputs are the Wilson functions γλ, γϕ and γϕ2 , associated with a renormalization of the
transverse vertex functions. These Wilson functions exhibit a crossover between the Wilson-Fisher
fixed point and the fixed point that controls the coexistence curve. Restricting to the case N = 1,
we derive a one-loop equation of state for 2 < d < 4 naturally parameterized by a ratio of non-linear
scaling fields. For d = 3 we show that a non-parameterized analytic form can be deduced. Various
asymptotic amplitudes are calculated directly from the equation of state in all three asymptotic
limits of interest and comparison made with known results. By positing a scaling form for the
equation of state inspired by the one-loop result, but adjusted to fit the known values of the critical
exponents, we obtain better agreement with known asymptotic amplitudes.

PACS numbers: 64.60.Ak,

I. INTRODUCTION

The universal equation of state for the Landau-
Ginzburg-Wilson O(N) model remains a subject of great
interest (see, for instance,1 and11 for recent reviews). Its
calculation from first principles is much more difficult
than the calculation of other universal quantities, such
as critical exponents or amplitude ratios. The univer-
sal equation of state for the scaling function exhibits
crossover behavior between three distinct, asymptotic
regimes - the critical region when approached from the
critical isotherm, or when approached along the critical
isochor, and the coexistence curve. Maintaining the cor-
rect analyticity properties of the equation of state in all
these three distinct regimes has not been possible within
the confines of first principle calculations, such as from
a field-theoretic, microscopic Hamiltonian. Rather, ap-
peal has been made to a parameterized phenomenological
scaling ansatz13 that exhibits the right asymptotics, the
underlying microscopic theory then being used to fix var-
ious free parameters that exist in the ansatz.

In this paper we use a renormalization group methodol-
ogy - Environmentally Friendly Renormalization9 - based
only on an underlying Landau-Ginzburg-Wilson Hamil-
tonian and without the need for any phenomenological
ansatz, to derive an equation of state that exhibits all
desired analyticity properties in the three distinct asymp-
totic regimes.

II. THE EQUATION OF STATE

As first noted by Widom7, in the critical region, the
equation of state is a homogeneous function relating an
external magnetic field H , the reduced temperature t,

and the magnetization ϕ, which can be expressed by

y = f (x) (1)

where f(x) is universal, the scaling variables y and x are
y = Bδ

cH/ϕδ and x = B1/βt/ϕ1/β , and Bc and B are
non-universal amplitudes associated with the behavior
on the critical isotherm t = 0 and the coexistence curve
t < 0, H = 0.

The scaling function f(x) is normalized such that
f(0) = 1 on the critical isotherm, and f(−1) = 0 on
the coexistence curve. Several properties of the universal
equation of state are known rigorously. For instance, it is
known that f(x) has a regular Taylor expansion around
the limit x = 0 given by

f(x) = 1 +
∞
∑

n=1

f0
nxn, (2)

while in the limit x → ∞, by Griffith’s analyticity, one
has an expansion of the form

f(x) = xγ
∞
∑

n=0

f∞
n x−2nβ (3)

In the limit x → ∞ a natural variable is z = b1ϕ/tβ ,

where b1 = (−C+
4 /(C+)

3
)
1/2

and the C+
2n are the ampli-

tudes of the 2n-point correlation functions for T > Tc,
C+ being the amplitude of the susceptibility. In terms of
z the equation of state takes the form

H = −(−C+/C+
4 )1/2tβδF (z) (4)

where the universal scaling function F (z) for small z has
an expansion of the form

F (z) = z +
1

6
z3 +

∞
∑

n=3

r2n

(2n − 1)!
z2n−1 (5)
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where r2 = r4 = 1 by choice of normalization. As (5) is
an expansion in ϕ, the constants r2n are related to the 2n-
point correlation functions at ϕ = 0 and hence are very
natural observables to calculate in lattice simulations. In
the limit z → ∞, F (z) has an expansion of the form

F (z) = zδ
∞
∑

k=0

F∞
k z−k/β (6)

The universal scaling functions f(x) and F (z) are related
via

z−δF (z) = F∞
0 f(x) (7)

with z = z0x
−β , where z0 is the universal zero of the

equation of state in terms of the variable z. Hence, the
expansion coefficients of the two functions can be related
to find

f∞
n = z2n+1−δ

0

r2n+2

F∞
0 (2n + 1)!

(8)

f0
n =

F∞
n

F∞
0

z
−n/β
0 (9)

Thus, we see it is sufficient to know the expansion co-
efficients of f(x) in the limits x → 0 and ∞ in order
to calculate the asymptotic properties of F (z) and the
interesting coefficients r2n.

Unlike the limits x → 0 and ∞, near the coexistence
curve, x → −1, there are no rigorous mathematical argu-
ments as to the analyticity properties of f(x), although
there do exist conjectures. For instance, for N > 1 in15,
based on an ε-expansion analysis, it was conjectured that
(1+x) has a double expansion in powers of y and y(d−2)/2

of the form

1 + x = c1y + c2y
1−ǫ/2 + d1y

2 + d2y
2−ǫ/2 + ... (10)

In three dimensions it predicts an expansion of (1+x) in
powers of y1/2.

Of course, the behavior in the vicinity of the coexis-
tence curve depends on the value of N . For N = 1,
the longitudinal correlation length remains finite away
from the critical point on the coexistence curve, while
for N > 1, the existence of Goldstone bosons leads to in-
frared singularities. For N = 1, one may formally posit
that in the vicinity of the coexistence curve

f(x) =

∞
∑

n=1

f c
n(1 + x)n (11)

the integer powers being a reflection of the finite longitu-
dinal correlation length. For Ising-like systems essential
singularities are to be expected. Of course, these cannot
be captured within the confines of an ansatz like (11).
For N > 1 studies of the non-linear σ model lead one to
expect a leading behavior of the form

f(x) ∼ cf (1 + x)2/(d−2) (12)

though, as mentioned, the nature of the corrections to
this behavior is not well understood, although (10) is
one conjecture. In the 1/N expansion there is some
evidence11 for logarithmic corrections of the form ln(1 +
x) in three dimensions.

Early field theoretic calculations using the renormal-
ization group with an ε-expansion14 foundered on the
fact that they did not exhibit Griffiths analyticity in the
large x limit. Irrespective of the expansion method - ε-,
fixed-dimension, 1/N etc. - there will remain a funda-
mental difficulty - that an expansion around a particular
fixed point will not readily access the universal equation
of state in the entire phase diagram, due to the presence
of other fixed points that must be accessed. Simply put,
the equation of state exhibits crossovers, and the nature
of these crossovers depends on N . For N = 1 the theory
is controlled by a “Gaussian” or mean-field fixed point17,
wherein fluctuations are suppressed on the coexistence
curve away from the critical point by the non-vanishing
longitudinal mass. In distinction, for N > 1, the theory
is dominated by the massless Goldstone excitations on
the coexistence curve and the non-linear σ model gives a
good description2.

The problem of incorporating Griffiths analyticity was
solved by using a parameterized formulation in terms of
new variables R and θ, related to t and ϕ via

ϕ = m0R
βm(θ)

t = R(1 − θ2)

H = h0R
βδh(θ)

where the two functions m(θ) and h(θ) are undetermined.
In this new parameterization the scaling variable x and
the scaling function f(x) are given by

x =
1 − θ2

θ2
0 − 1

(

m (θ0)

m (θ)

)1/β

(13)

f (x) =

(

m (θ)

m (1)

)−δ
h (θ)

h (1)
(14)

Most current field theoretic formulations for determin-
ing the equation of state (see1,11 for comprehensive re-
views) rely on such formulations. The drawback is that
the underlying microscopic theory is not used to deter-
mine the functional form of m(θ) and h(θ), rather an
ansatz is made as to the general functional form which
depends on certain unknown parameters and then the
underlying microscopic theory is used to fix these pa-
rameters. The most common ansatz is that the func-
tions are polynomials in θ. The coefficients of the pow-
ers of θ are then determined by calculating certain ob-
servables independently from the underlying microscopic
theory and then using the values of these observables to
determine the coefficients. Various methodologies have
been used1,11,12 using a variety of methods. For instance,
an expansion of the effective potential for small ϕ for
t > 0 using ǫ or fixed dimension expansions. Results
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from Monte-Carlo simulations or high temperature ex-
pansions have also been used.

In this paper we apply a new method to describe the
equation of state in a uniform manner. Using environ-
mentally friendly renormalization9, we find a schema able
to capture the crossover between the Wilson-Fisher fixed
point and the fixed point that controls the coexistence
curve. By integrating along curves of constant magneti-
zation, we obtain the equation of state in the whole criti-
cal region. Moreover, the equation of state that we obtain
is parameterized in terms of the inverse of the transverse
correlation length, a quantity well defined over the en-
tire phase diagram. The representation we have found
is valid for both large and small values of the scaling
variables and satisfies Griffiths analyticity. Although our
approach works for any N we here concentrate on the
case N = 1.

III. A RENORMALIZATION GROUP

REPRESENTATION OF THE EQUATION OF

STATE

In this section we briefly outline the derivation of the
equation of state for a theory described by the standard
LGW Hamiltonian with O(N) symmetry

H[ϕ] =

∫

ddx

(

1

2
∇ϕa∇ϕa+

1

2
r(x)ϕaϕa+

λB

4!
(ϕaϕa)2

)

.(15)

with r = rc + tB, where rc is the value of r at the critical

temperature Tc and tB = Λ2 (T−Tc)
Tc

, Λ being the mi-
croscopic scale. We denote a generic vertex function by

Γ
(N,M)
l...lt...t, where the number of l and t subscripts indicates

whether a longitudinal or a transverse propagator is to be
attached to the vertex at the corresponding point. When
all subscripts are either l or t we will use a single l or t,

for example Γ
(N,M)
t...t will be abbreviated Γ

(N,M)
t . Further-

more, when there are no ϕ2 insertions (i.e. M = 0) the
second index will be left off e.g. Γ(N) indicates Γ(N,0).

Due to the Ward identities of the model18, it is suf-

ficient to know only the Γ
(N,M)
t , as all the other vertex

functions can be reconstructed from these. The equation
of state is

H = Γ
(2)
t ϕ (16)

A. Renormalization in terms of Non-Linear Scaling

Fields

Due to the existence of large fluctuations in the critical
regime a renormalization of the microscopic bare param-
eters of the form

t(m, κ) = Z−1
ϕ2 (κ)tB(m) (17)

λ(κ) = Zλ(κ)λB (18)

ϕ(κ) = Z−1/2
ϕ (κ)ϕB (19)

must be imposed, where κ is an arbitrary renormalization
scale. The renormalized parameters satisfy the differen-
tial equations

κ
dt(κ)

dκ
= γϕ2(κ)t(κ) (20)

κ
dλ(κ)

dκ
= γλ(κ)λ(κ) (21)

κ
dϕ(κ)

dκ
= −

1

2
γϕ(κ)ϕ(κ) (22)

where the Wilson functions associated with this coordi-
nate transformation are

γϕ2(κ) = − κ
d

dκ
lnZϕ2

∣

∣

∣

∣

c

(23)

γλ(κ) = κ
d

dκ
lnZλ

∣

∣

∣

∣

c

(24)

γϕ(κ) = κ
d

dκ
lnZϕ

∣

∣

∣

∣

c

(25)

and the derivative is taken along an appropriately chosen
curve in the phase diagram, which we here denote by
c. Similarly, integration of the renormalization group

equation for any multiplicatively renormalizable Γ
(N,M)
t

yields

Γ
(N,M)
t (t, λ, ϕ) =

e
∫

mt
κ

( N
2 γϕ−Mγϕ2 ) dx

x Γ
(N,M)
t (t(κ), λ(κ), ϕ(κ)) (26)

To impose a specific, as opposed to abstract, coordinate
transformation between bare and renormalized theory
the renormalization constants Zϕ, Zϕ2 and Zλ must be
fixed. Here, we impose the explicitly magnetization de-
pendent normalization conditions

∂p2Γ
(2)
t (p, t(κ, κ), λ(κ), ϕ(κ), κ)

∣

∣

∣

p2=0
= 1 (27)

Γ
(2,1)
t (0, t(κ, κ), λ(κ), ϕ(κ), κ) = 1 (28)

Γ
(4)
t (0, t(κ, κ), λ(κ), ϕ(κ), κ) = λ. (29)

Note that in this case we impose the normalization con-
ditions on the transverse correlation functions. These
conditions serve to fix the three Z functions associated
with ϕB, tB and λB while the condition

κ2 = Γ
(2)
t (0, t(κ, κ), λ(κ), ϕ(κ), κ), (30)

serves as a gauge fixing condition that relates the slid-
ing renormalization scale κ to the physical temperature
t and the physical magnetization ϕ. Physically, κ is a
fiducial value of the non-linear scaling field mt, which is
the inverse transverse correlation length.

Besides mt, the other non-linear scaling field we use to
parameterize our results is

m2
ϕ =

1

3

Γ
(4)
t ϕ2

∂p2Γ
(2)
t |p2=0

(31)
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which is an RG invariant. It represents the anisotropy in
the masses of the longitudinal and transverse modes and

is related to the stiffness constant ρs = ϕ2∂p2Γ
(2)
t |p2=0

via m2
ϕ = 1

3λρs.
With a given renormalization prescription one may de-

termine the equation of state in terms of the non-linear
scaling fields mt and mϕ, as the transverse and longitudi-
nal propagators that appear in all perturbative diagrams
can be parameterized in terms of them. One of the main
motivations for this reparametrization in terms of non-
linear scaling fields is that it eliminates all tadpole dia-
grams at higher loop order. However, what is required is
the equation of state in terms of the linear scaling fields
t and ϕ. One must therefore determine the coordinate
transformation, t = t(mt, mϕ), ϕ = ϕ(mt, mϕ), between
them.

B. Relating Non-linear and Linear Scaling Fields

This may be done by specifying a particular curve, c,
in the phase diagram along which we integrate the dif-

ferential relation for the tranverse vertex functions Γ
(N)
t .

For example,

dΓ
(2)
t = Γ

(2,1)
t dt +

1

6
Γ

(4)
t dϕ2 (32)

can be integrated along a curve of constant ϕ to yield

dt = dΓ
(2)
t /Γ

(2,1)
t , where the right hand side is naturally

written in the coordinate system (mt, mϕ). To integrate
the renormalization group equation for the vertex func-
tions it is most natural to use mt = κ as the flow variable
and hold mϕ constant. However, if we then wish to inte-
grate (32) along a curve of constant ϕ we must include a
Jacobian factor, 2/(2− γλ + γϕ), that takes into account
the variation of mϕ along a constant ϕ curve. The re-
lation between mϕ and ϕ is specified by (31) using the

renormalization group equations for ∂p2Γ
(2)
t and Γ

(4)
t with

the normalization conditions (27) and (29). Using (26)

for Γ
(2)
t and Γ

(2,1)
t and the normalization conditions (28)

and (30) one may write

dΓ
(2)
t

Γ
(2,1)
t

= (2 − γϕ)e
−
∫

κ
κ0

γϕ2
dx
x κdκ (33)

In the universal limit, where λ → ∞19, the crossover to
mean field theory is pushed off to infinity and the theory
is then controlled in the limit κ → ∞ by the Wilson-
Fisher fixed point. Hence, γi → γWF

i , where γWF
i is

the Wilson function γi at the Wilson-Fisher fixed point.
Defining ∆γi = (γi − γWF

i ) (33) yields

dt = (2 − γϕ)e
−
∫

κ

κ0
∆γϕ2

dx
x

(

κ

κ0

)−γϕ2

κdκ (34)

To integrate (34) we need to fix some boundary condi-
tion. The coexistence curve, where mt = 0, is a natural

one. In this case, dt integrates to the temperature vari-
able (T − Tc(ϕ)), where Tc(ϕ) corresponds to that point
on the coexistence curve where the magnetization is ϕ.
As we wish to use as temperature variable t = (T − Tc),
we may write (T−Tc(ϕ)) = t+∆, where ∆ = (Tc−Tc(ϕ))
is the temperature shift that measures the distance be-
tween the critical point and the point on the coexistence
curve, Tc(ϕ). In the integral, −

∫ κ

κ0
∆γϕ2dx/x, one may

safely take the universal limit, κ0 → ∞. In this universal
scaling limit, in terms of the linear scaling fields t and ϕ,
the problem has only one scaling variable, x. In terms
of the coordinates mt and mϕ, this manifests itself as
a reduction to the single scaling variable, z = mt/mϕ.
Passing to this variable, using (31), and integrating this
along a curve of constant ϕ (taking into account the Ja-
cobian factor) one finds

A1(1 + x) = F(z) (35)

where the scaling variable x = B1/βt/ϕ1/β , B being the
non-universal amplitude introduced previously, and the
universal scaling function F(z) is

F(z) =

∫ z

0

2(2 − γϕ)

2 − γλ + γϕ
D(x)x

1
β

dx

x

where

D(x) = exp

(

−

∫ x

∞

2

(

∆γϕ2 − ∆γλ

2β +
∆γϕ

2β

2 − γλ + γϕ

)

dy

y

)

(36)

The quantity A1 is related to the universal zero of the
equation of state. In terms of the amplitude B

B2 =
λ

3κ(4−d−η)
A2β

1 (37)

Equation (35) determines the coordinate transforma-
tion, t = t(mt, mϕ) ϕ = ϕ(mt, mϕ), in the scaling limit
where there is only one relevant scaling variable associ-
ated with the linear scaling fields, x ∼ t/ϕ1/β , and one
relevant scaling variable associated with the non-linear
scaling fields, z = mt/mϕ. Hence, we determine the co-
ordinate transformation x = x(z). Note that the geom-
etry of this transformation has some unusual properties
relative to the (T, ϕ) plane. The coexistence curve is
mapped to the single point x = −1, the critical isotherm
is mapped to the single point x = 0, and the critical
isochor, for t > 0, maps to the single point at infinity.
However, the critical point itself - as the intersection of
the coexistence curve, critical isotherm and critical iso-
chor - maps to all these points.

To proceed to the equation of state we use (16) and

the renormalization group equation for Γ
(2)
t . Once again,

passing to the variable z and including in the Jacobian
factor, one obtains

H

ϕδ
=

(

λ

3κ2

)

(δ−1)
2

G(z) (38)
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where the universal scaling function G(z) is given by

G(z) = z
γ
β e

γ
β

∫

z
∞

∆γλ−∆γϕ
2−γλ+γϕ

dy
y e

−
∫

z
∞

2∆γϕ
2−γλ+γϕ

dy
y (39)

Introducing the scaling variable y = A−1
3 (H/ϕδ), where

A3 is related to the non-universal amplitude Bc via

Bδ
c = A3

(

λ

3κ2

)

(δ−1)
2

(40)

one sees that the universal equation of state is now of the
form (1) with

f(x) =
1

A3
G(F−1(A1(1 + x)) (41)

We may now ask what more can be said about A1 and
A3, or whether they are simply non-universal parame-
ters, being related to the non-universal amplitudes Bc

and B, that cannot be determined within the present
formalism? A1, in fact, is related to the universal zero
of the equation of state, and may be calculated in the
following manner: We choose some arbitrary value of z,
z0, and write F(z) → F(z0) +

∫ z

z0
F (x)dx; then choose

z and z0 in the asymptotic regime z, z0 → ∞ z > z0,
wherein, from Griffith’s analyticity, we can write F(z) =
z1/β

∑∞

n=0 F
∞
n z−2n. In the limit z → ∞, depending on

the value of β, certain terms in the asymptotic expansion
diverge. For instance, for the three dimensional Ising
model, at one loop, β = 3/10, hence, only the n = 0
and n = 1 terms diverge, while the contributions from
n ≥ 2 → 0. Denoting the divergent part of the expan-
sion as F∞(z); as z0 is constant we may identify the non-
constant term, A1x, in this limit with F∞(z). Hence, we
may identify A1 = limz0→∞(F(z0) − F∞(z0)). In terms
of the integrand, I(x), of the scaling function F , we may
write

A1 =

∫ ∞

0

(I(x) − I∞(x))dx (42)

where I∞(x) is defined via F∞ =
∫ z

0
I∞(x)dx. A1 is

clearly universal. To determine A3, we set the condition
y = 1 on the critical isotherm t = 0. This corresponds
to a particular value, zc, of z. Hence, A3 = G(zc). To
determine zc note that from (36) on the critical isotherm
A1 = F(zc). The inversion of this function allows for the
identification of zc. Hence, we deduce A3 to be

A3 = G(F−1(A1)) (43)

which is, once again, a universal function.
So, given that A3 is determined from A1, and A1 is

determined from F by subtracting off its divergent com-
ponent as z → ∞, we see that the simple ingredients
that enter into a complete specification of the universal
equation of state are the three Wilson functions - γλ, γϕ2

and γϕ. These are the only quantities that need to be
determined perturbatively (or otherwise).

Note that this equation of state has been determined
from a first principles calculation based on an underlying
microscopic model. It is parameterized, but parameter-
ized in a way that is completely determined by the un-
derlying model. This is in distinction to standard para-
metric representations1,11, where, after imposing certain
analyticity requirements, there is a large arbitrariness in
determining the scaling functions h(θ) and m(θ). In fact,
these functions may depend on an arbitrary number of
parameters and, for each parameter, a universal quan-
tity must be independently calculated in order to fix it.
Also, the parameter z here has a much more transpar-
ent and direct physical meaning than θ, being simply the
ratio of the two fundamental non-linear scaling fields in
the problem - mt and mϕ - the transverse correlation
length and the stiffness constant. As these quantities
are well defined throughout the phase diagram this for-
mulation has an added advantage relative to parametric,
fixed-dimension expansions where the relevant non-linear
scaling field used is the mass for T > Tc and there are
difficulties reaching the ordered phase1.

In order to determine the expansion coefficients f0
n

and f∞
n , as introduced in section 1, one requires the

Taylor expansion of f(x) around x = 0 and x = ∞.
In terms of our parametric representation, dnf(x)/dxn

can be expressed using d/dx = (dz/dx)d/dz, where
dz/dx = A1/(dF(z)/dz) hence,

dnf(x)

dxn
=

A1

A3

(

(

dF(z)

dz

)−1
d

dz

)n

G(z) (44)

which need to be evaluated at the points of interest z = zc

(x = 0), z = ∞ (x = ∞) and z = 0 (x = −1). For
instance, taking the limit x → ∞ in (36) and (39), and
using the fact that the Wilson functions γi approach their
values at the Wilson-Fisher fixed point so ∆γi → 0, one
finds

F(z) → γz1/β (45)

G(z) → z
γ
β (46)

Hence,

f(x) →
Aγ

1

A3
γ−γxγ + O(xγ−2β) (47)

from which, using (43) we may identify the expansion
coefficient

f∞
0 =

(A1/γ)γ

G(F−1(A1))
(48)

which is related to the universal amplitude ratio Rχ via
f∞
0 = R−1

χ . Using the expression for C+ in our formu-

lation, C+ = κ−(2−η)γ−γ and equations (37) and (40),
one can verify that (48) is identical to the expression
Rχ = (C+/Bc)(B/Bc)

δ−1. Similarly, using the expres-
sion for C+

4 in our formulation

C+
4 = −λγ2γ+dνκ4γ−8+2dν (49)
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one may determine the universal amplitude ratio R+
4 =

−C+
4 B2/(C+)3 to be

R+
4 =

3(F(zc))
2β

γγ−dν
(50)

With these two amplitude ratios in hand two-scale factor
universality implies that any other may be determined.

IV. ONE-LOOP RESULTS

The advantages of the present formulation can be best
illustrated by considering a concrete example. We will
consider the universal equation of state in the one loop
approximation, as at this level it is still possible to obtain
analytic or “quasi”-analytic results.

We begin with the values of the Wilson functions to
one loop. The running dimensionless coupling λ satisfies

z
dλ(z)

dz
= −ελ + cdλ

2(z)

(

(1 +
1

z2
)

d−6
2 +

(N − 1)

9

)

(51)
where cd = 3(4 − d)Γ((4 − d)/2)/2(4π)d/2. Taking the
initial condition λ(z0) = λ, in the limit z0 → ∞, λ → ∞
one arrives at the universal separatrix solution20

λ(z) =

(

cd

(

(1 +
1

z2
)

d−6
2 +

(N − 1)

9

))−1

(52)

On the separatrix

γλ = (4 − d)

(

(1 + 1
z2 )

d−6
2 + (N−1)

9

(1 + 1
z2 )

d−4
2 + (N−1)

9

)

(53)

γϕ2 = (4 − d)

(

(1 + 1
z2 )

d−6
2 + (N−1)

3

3(1 + 1
z2 )

d−4
2 + (N−1)

3

)

(54)

γϕ = 0 (55)

In the limit z → ∞, the Wilson-Fisher fixed point is ap-
proached and γi → γWF

i with, at one loop, γλ = (4 − d)
and γϕ2 = (4 − d)(N + 2)/(N + 8). On the contrary,
in the limit z → 0 the strong-coupling fixed point is ap-
proached and γi → γSC

i . For N > 1 the Goldstone bosons
dominate and γλ = γϕ2 = (4 − d). For N = 1 however,
this fixed point is mean-field like as fluctuations are sup-
pressed and γi → 0.

In the limit z → ∞, the Wilson functions can be ex-
panded as power series in z−2 for any N

γi(z) = γWF
i +

∞
∑

n=1

ai(n)z−2n (56)

Hence, the universal scaling functions F and G can also
be written as power series in z−2. This is true in a dia-
grammatic expansion to all orders not just at one loop.
The limit z → 0 is more complicated. In this limit,

γi → γSC
i but the nature of the corrections is not ob-

vious. At the one-loop level, from (53), one can see that
the leading corrections to the strong coupling fixed point
values will be z(4−d)/2.

For N 6= 1 analytic progress is difficult. However, for
N = 1 these expressions simplify greatly yielding

γλ = (4 − d)

(

1 +
1

z2

)−1

(57)

γϕ2 =
(4 − d)

3

(

1 +
1

z2

)−1

(58)

With these expressions one can explicitly calculate the
scaling functions G(z) and F(z)

G(z) = z2

(

2

(d − 2)
+ z2

)

(4−d)
(d−2)

(59)

F(z) =
3

d + 2

(

(

2

d − 2
+ z2

)

2(4−d)
3(d−2)

(2z2 − 1)

+

(

2

d − 2

)

2(4−d)
3(d−2)

)

(60)

To determine the constant A1 we take the z → ∞ limit
of (60), identify the divergent part with A1x and the con-
stant remainder with A1.

21 Note that the case d = 2 is
problematic. This is an artefact of the one-loop approx-
imation where, in particular, in d = 2 one has β = 0,
which is clearly unphysical. The case d = 4 is also inac-
cessible due to the fact that we took the universal limit
λ → ∞. It may be recovered by returning to (51) and
integrating it and not taking this limit. In this case,
as expected, logarithms appear. So, equations (59) and
(60) are valid for 2 < d < 4. A3 can be determined as a
function of the undetermined A1 using (43). Explicitly,
taking the z → ∞ limit A1 can be identified to be

A1 =
3

d + 2

(

2

d − 2

)

2(4−d)
3(d−2)

(61)

from which one determines zc = 2−1/2 which, interest-
ingly, is dimension independent, though, once again, this
is a one-loop artefact. With zc in hand one determines
A3 to be

A3 =
1

2

(

d + 2

2(d − 2)

)

(4−d)
(d−2)

(62)

Thus, the one-loop equation of state for N = 1 in d-
dimensions is

y =
2

2
(d−2)

(d + 2)
(4−d)
(d−2)

z2(2 + (d − 2)z2)
(4−d)
(d−2) (63)

x = (2z2 − 1)(1 + (d − 2)z2/2)
2(4−d)
3(d−2) (64)

Griffiths analyticity can be seen quite simply from these
expressions. For x → ∞ one has z → ∞ and the right
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hand side of (64) takes the form z1/β
∑∞

n=0(cn/z2n),
where β = 3(d − 2)/2(d + 2). Substituting into (63),
one then has the expansion (3), where γ = 6/(d + 2).
Similarly, by expanding (64) around z = zc one obtains
the expansion (2). Finally, in the vicinity of the coexis-
tence curve, from (64) we see that (1+x) can be written
as a power series expansion in z2 and, hence, we verify
(11). Once again, within the approximation used one
would not expect essential singularities to appear. To
summarize: (63) and (64) have been determined from
first principles from the underlying microscopic theory
and obey all analyticity and other properties required in
the different asymptotic regimes.

¿From these expressions one may calculate analytically
the coefficients f0

n(d) and f∞
n (d) as functions of d, as well

as derived quantities, such as the r2n, and universal am-
plitude ratios, like Rχ and R+

4 . In the same way, we may
examine the behavior in the vicinity of the coexistence
curve. First, we determine z as a power series in (1 + x),
and then we replace the result in the expansion of y for
z small.

In Table I we show the coefficients f0
1 (d) − f0

5 (d) and
in Table II f c

1 (d) − f c
3 (d). The coeffients f∞

0 (d) − f∞
5 (d)

for arbitrary d appear in Table III. Our results for some
important quantities like r2n(d) appear in Table IV. Ob-
viously with analytic expressions in hand it is straight-
forward to generate other coefficients.

TABLE I: Values of f0
n for the d-dimensional Ising universality

class.

f0
1 3 × 2

− 1
3
+ 8

3 (d−2) (2 + d)
2+d

6−3 d

f0
2 − (d − 4) (2 + d)

4+2 d
6−3 d 2

8 (4−d)
3 (d−2)

f0
3 (1/3) × 2−3+ 8

d−2 (d − 4) (2 + d)
2+d
2−d

f0
4 (1/27) × 2

70−19 d
3 d−6 (d − 7) (d − 4) (2 + d)

8+4 d
6−3 d (8 + d)

f0
5

(d−16) (d−4) (5+d) (2 d−11)

405× 2

20 (d−4)
3 (d−2) (2+d)

5 (2+d)
3 (d−2)

TABLE II: Values of fc
n for the d-dimensional Ising univer-

sality class.

fc
1 3 · 2

6−d
d−2 (2 + d)

2
2−d

fc
2 3 · 2

10−4d
d−2

(

−3 · 2
2d−2
d−2 + 5 · 2

d
d−2

)

d−4
(2+d)2

(2 + d)
4−d
d−2

fc
3 64

d−1
2−d 4−d

(2+d)3
(2 + d)

4−d
d−2

(

81 · 2
3d+4
d−2 + 47 · 2

2+4d
d−2 −

45 · 32
d

d−2 − 35 · 2
2 (3+d)

d−2 d + 9 · 2
2+4 d
d−2 d

)

One may also recover the well known ε-expansion re-

sult by substituting d = 4− ε in (63) and (64), obtaining

y =
2

2
(2−ε)

(6 − ε)
ε

(2−ε)

z2(2(1 + z2) − εz2)
ε

(2−ε) (65)

x = (2z2 − 1)(1 + (2 − ε)z2/2)
2ε

3(2−ε) (66)

Expanding in powers of ε to O(ε) one finds

y = 2z2

(

1 +
ε

2
ln

2(1 + z2)

3

)

(67)

1 + x = 2z2 +
ε

3
(2z2 − 1) ln(1 + z2) (68)

Inverting (68) in powers of ε and substituting into (67)
one finds

y = 1 + x +
ε

2
(1 + x) ln

(x + 3)

3
−

ε

3
x ln

(x + 3)

2
(69)

which is the well known result in terms of normalized
variables.

A. The Case d = 3

For d = 3 things are even more transparent, as the
parameter z can be totally eliminated, thereby ending
with a direct, unparameterized relation between x and
H/ϕδ. For d = 3 the scaling functions F(z) and G(z) are

F(z) =
2

2
3 3

5
+

3

5
(z2 + 2)

2
3 (2z2 − 1) (70)

G(z) = (z4 + 2z2) (71)

while A1 and A3 are given by

A1 =
2

2
3 3

5
A3 =

5

4
(72)

With these values for the amplitudes A1 and A3 the
equation of state in terms of the variable z is

z4 + 2z2 −
5y

4
= 0 (73)

which can be simply solved (the positive square root is
required) and substituted into (70) to find

2
2
3 x =

(

1 +

(

1 +
5y

4

)
1
2

)

2
3
(

2

(

1 +
5y

4

)
1
2

− 3

)

(74)

which can be seen to satisfy y = 1 at x = 0 and y = 0
at x = −1. For large x, y → (28/5/5)x6/5, i.e. y ∼ xγ

as required by Griffith’s analyticity. It is valid for both
t > 0 and t < 0.

In the second column of Table V we see the numeri-
cal values of the coefficients f0

n and f∞
n , as well as some

important derived quantities, such as the r2n. All these
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TABLE III: Values of f∞
n for the d-dimensional Ising univer-

sality class.

f∞
0

4
1

d−2 ( 2+d
d−2 )

d−4
d−2

(

2
14−5 d
6−3 d (d−2)

8−2 d
3 d−6

) 6
2+d

f∞
1

4
1

d−2

d−2

(

2
14−5 d
6−3 d (d − 2)

8−2 d
3 d−6

)

3 (d−4)
2+d

(

2+d
d−2

)
d−4
d−2

f∞
2 −3 × 2

6−2d
d−2

(

d−4
d−2

) (

2
14−5 d
6−3d (d − 2)

8−2d
3d−6

)

6(d−3)
2+d

(

2+d
d−2

)
d−4
d−2

f∞
3 2

2(3−d)
d−2

(d−4)(4d−13)

(d−2)3

(

2
14−5 d
6−3d (d − 2)

8−2d
3d−6

)
9d−24
2+d

(

2+d
d−2

)
d−4
d−2

f∞
4 2

12−5d
d−2 d−4

(d−2)4

(

2
14−5d
6−3 d (d − 2)

8−2d
3d−6

)
12d−30

2+d
(

2+d
d−2

)
d−4
d−2

×

(17 − 5d) (11d − 32)

f∞
5

2
2(8d−35)

d−2 (d−2)
50−15d

d−2 ( 2+d
d−2 )

d−4
d−2

−45

(

2
14−5d
6−3d (d−2)

8−2d
3d−6

) 66
2+d

×

(

176553 × 2
6d+8
d−2 d +

27 (2419d − 11973) d22
4(3+d)

d−2 − 189
(

1520 + 13d4
)

2
5(2+d)

d−2

)

TABLE IV: Values of R+
4 , F∞

0 and some r2n coefficients for
the d-dimensional Ising universality class.

R+
4

6
d−2

(

2
5
3
+ 4

6−3 d (d − 2)
8−2 d
3 d−6

)

3 (d−2)
2+d

F∞
0

4
d−1
2−d (d−2)2 ( 2+d

d−2 )
4−d
d−2

9

(

2
14−5 d
6−3 d (d−2)

8−2 d
3 d−6

)

6 (d−3)
2+d

r6
5
2

(4 − d) (d − 2)

r8
35
6

(d − 4) (4 d − 13)

r10
35
4

(4 − d) (5 d − 17) (11 d − 32)

r12 385 × 2
2−6 d
d−2

(

665 × 24+ 5 d
d−2 − 6539 × 26+ 10

d−2 d+

11973 × 2
2+4 d
d−2 d2

− 2419 × 2
2+4 d
d−2 d3 + 91 × 32

d
d−2 d4

)

values are as in good an agreement with known values as
one might expect from a one-loop calculation, in those
cases where a comparison can be made, with one appar-
ent exception: the value of r8 is about 2− 3 times bigger
than the majority of estimates, which are in the range
2.18 − 2.7. However, a Monte Carlo simulation of Kim
and Landau10 led to a value of r8 which was much larger
than other estimates. However, this estimate goes down
when we fit with the exact exponents in the next section.
Our value of r10 = −17.5 - is in the expected region of
previous calculations, which give estimates in the region
−4 − −25, though the errors associated with many of
these estimates are large. Our estimate of r12 for d = 3
would seem to be new. Obviously an important advan-
tage of the present approach is the facility with which the
r2n can be calculated for even very high n. In the figure
we see a comparison between our one-loop equation of
state and that obtained by the HT method.

-1 0 1 2 3
0

1

2

3

4

5

f(x)

x

FIG. 1: The scaling function f(x) of the three-dimensional
Ising model. The dashed line was taken from reference8.

V. FITTED EXPONENTS

Although one of the chief advantages of the present
methodology is the fact that it is completely self-
contained, in that there are no parameters to be fixed
by appealing to exogenous information, as in standard
parametric approaches, it is possible adapt the present
method to utilize information that is available, such as
precise estimates for the critical exponents and amplitude
ratios. To illustrate this here, we once again consider the
case N = 1. We take the one-loop “crossover” function
(1 + z−2) to give the exact form of the crossover and fit
its asymptotic value to the best estimates for the critical
exponents. Hence, we take

γλ =
(4 − d)

(1 + 1
z2 )

γϕ2 =
(2 − 1/ν)

(1 + 1
z2 )

γϕ =
η

(1 + 1
z2 )

(75)

The crossover form for η is of course a pure supposition
given that the form (1 + z−2) is derived from a one-loop
calculation. The form of (75) is such as to guarantee a
crossover to the known asymptotic behavior. The same
procedure could be carried out using a two-loop calcula-
tion. In this case the crossover functions for each Wilson
function would be different, due to the fact that differ-
ent diagrams contribute to them. Once again constants
would be introduced to ensure a crossover in the limit
z → ∞ to the correct exponent values for ν and η. With
the ansatz (75) one finds

F(z) =

(

ν

β

)
1
2β 2β(γ − 1)

1 − 2β
[

(

γ(1 − 2β)

2ν(γ − 1)
z2 − 1

)(

1 +
β

ν
z2

)
1
2β

−1

+ 1

]

(76)

G(z) = z
γ
β

(

1 +
ν

βz2

)

(γ−2β)
2β

(77)
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Examining the large z limit one determines the universal
amplitude A1 to be

A1 =

(

ν

β

)
1
2β 2β(γ − 1)

1 − 2β
(78)

Consequently, we determine z2
c = 2ν(γ − 1)/γ(1 − 2β)

and

A3 =
2β(γ − 1)

(γ − 2β)

(

2ν(γ − 2β)

2γβ(1 − 2β)

)

γ
2β

(79)

Using this mechanism, in the third column of Table
V, we show the results for the three-dimensional Ising
model. The values of the critical exponents that we have
used are the best values reported in the literature11. i.e.
γ = 1.2372, β = 0.3265 and ν = 0.6301.

TABLE V: Numerical values of expansion coefficients for the
three-dimensional Ising universality class: HT results taken
from reference11, one loop(RG1) and fitted exponents (RGA)
results. The resulting values for the coefficients r2n were ob-
tained from the relation (8) and using the values of f∞

n .

HT RG1 RGA

f∞
0 0.6024(15) 0.606 0.596

f∞
1 0.696 0.793

f∞
2 0.6 0.613

f∞
3 0.223 0.151

f∞
4 -0.066 -0.084

f∞
5 -0.0454 0.00527

r6 2.056(5) 2.5 1.938

r8 2.3(1) 5.833 2.505

r10 -13(4) -17.5 -12.599

r12 -192.5 10.902

f0
1 1.0527(7) 1.034 1.05

f0
2 0.0446(4) 0.029 0.043

f0
3 -0.0254(7) -0.0034 -0.0054

f0
4 0.0007 0.0013

f0
5 -0.00019 -0.0004

fc
1 0.9357(11) 0.96 0.939

fc
2 0.08(7) 0.048 0.076

fc
3 -0.0112 -0.023

fc
4 0.0049 0.0138

fc
5 -0.0028 -0.011

R+
4 7.81(2) 6.892 7.981

F∞
0 0.03382(15) 0.0347 0.0263

Most of the values found with fitted exponents sub-
stantially improve the value compared with the one-loop
approximation in those cases where a comparison can be
made with HT expansions. This is particularly notable
in r6, r8 and r10. f∞

0 and F∞
0 are a little puzzling in this

respect. However, it is worth noting the experimental
result reported in reference11 where f∞

0 = 0.5917, this

being substantially different to the theoretical value of
f∞
0 = 0.636911. The only other notable change is that of

f∞
5 , which is related to r12, where there is a sign change

passing from the one-loop to the adjusted values.

-1 0 1 2 3
0

1

2

3

4

5

f(x)

x

FIG. 2: The scaling function f(x) of the three-dimensional
Ising model using fitted exponents. The dashed line was taken
from reference8. Differences are not visible at this scale.

TABLE VI: Numerical values of expansion coefficients for the
two-dimensional Ising universality class; high precision (HT )
results taken from reference11 and results from using fitted
exponents(RGA)

.

HT RGA

f∞
0 0.14753 0.1043

f∞
1 0.1696

f∞
2 0.2365

f∞
3 0.2931

r6 3.67867(7) 2.8571

r8 26.041(11) 15.2381

r10 284.5(2.4) 125.714

r12 4.2(7) × 103 1436.73

f0
1 1.1724

f0
2 0.1473

f0
3 -0.0164

fc
1 0.785

fc
2 0.295

R+
4 7.336774(10) 9.7594

F∞
0 5.92357(6) × 10−5 0.10067

In the same way, we can also substitute the well-
known exact values for the critical exponents in the two-
dimensional case, i.e. γ = 7/4, β = 1/8 and ν = 1. Table
VI shows the subsequent results. In this case, except for
the value of f∞

0 , the values found for r2n show signifi-
cant differences. This probably hints at the inadequacy
of the ansatz for the crossover functions (75). We have
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not been able to find reported values for the coefficients
f0

n and f c
n, some of which are reported in Table VI. It

would be interesting to be able to make the comparison.

VI. CONCLUSIONS

Using environmentally friendly renormalization we de-
rived a formal expression for the equation of state for the
O(N) model. This expression has the advantages that:
i) it is derived from an underlying microscopic (field-
theoretic) model; ii) requires as input for any calculation
only the three crossover Wilson functions associated with
a magnetization-dependent renormalization of the field,
ϕ, the composite operator, ϕ2, and the coupling con-
stant, λ. In particular no experimental input is required
on order to fix parameters; iii) it is parameterized by
two non-linear scaling fields - the transverse mass, and
an anisotropy parameter closely related to the stiffness
constant; iv) it manifestly expresses all relevant, desired
analyticity properties, both in the critical region and on
the coexistence curve; v) universal coefficients associated
with the expansion of the equation of state in any of the
asymptotic regimes may be simply calculated thereby ob-
taining coefficients that are presently unknown.

After deriving one-loop expressions for general N , the
formulation was then used to calculate a parameterized,
analytic expression for the equation of state for N =
1 for 2 < d < 4. For d = 3 it was shown how the
parameterization could be dispensed with and a closed-
form, non-parameterized expression for the equation of
state derived. Various universal coefficients associated

with the asymptotic regimes x = 0, x = ∞ and x =
−1 were derived for arbitrary d. For d = 3 these were
compared with previous results.

By taking the functional form for the Wilson functions
at one-loop and introducing constants to fit to the best-
known asymptotic values of the critical exponents, com-
parison was made for d = 3 and d = 2 between our cal-
culated expansion coefficients and those, where known,
as derived using HT expansions, Monte Carlo, etc., in
the different asymptotic regimes. In most cases the fit-
ted values were substantially better than the one-loop
values, agreement being better for d = 3 than d = 2.

When continued to complex values of the external mag-
netic field the universal equation of state should also cap-
ture the Lee-Yang edge. There are additional points of
non-analyticity in our expressions at z2

LY = −2/(d − 2)
or z2

LY = −ν/β. These imaginary values of z are nat-
urally associated with the Lee-Yang edge singularities.
However, our equation of state is not yet optimized to
include the associated crossover and we do not expect to
obtain good estimates for the associated universal expo-
nents or amplitudes. Our formulation can be adjusted
to include this additional singularity, but as of yet we
have not studied the effect of including this crossover.
We hope to return to this in the future.
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