656 research outputs found
No evidence that prefrontal HD-tDCS influences cue-induced food craving.
This study investigated whether the application of high definition transcranial DC stimulation (HD-tDCS) to the dorsolateral prefrontal cortex reduces cue-induced food craving when combined with food-specific inhibitory control training. Using a within-subjects design, participants (N = 55) received both active and sham HD-tDCS across 2 sessions while completing a Go/No-Go task in which foods were either associated with response inhibition or response execution. Food craving was measured pre and post stimulation using a standardized questionnaire as well as desire to eat ratings for foods associated with both response inhibition and response execution in the training task. Results revealed no effect of HD-tDCS on reducing state food craving or desire to eat. Due to the COVID-19 pandemic, we were unable to achieve our maximum preplanned sample size or our minimum desired Bayesian evidence strength across all a priori hypotheses; however 6 of the 7 hypotheses converged with moderate or stronger evidence in favor of the null hypothesis over the alternative hypothesis. We discuss the importance of individual differences and provide recommendations for future studies with an emphasis on the importance of cognitive interventions
Supersymmetric Boost on Intersecting D-branes
We study the effect of the Born-Infeld electric field on the supersymmetric
configuration of various composite D-branes. We show that the generic values of
the electric field do not affect the supersymmetry but, as it approaches
keeping the magnetic field finite, various combinations of the
magnetic fields allow up to 8 supersymmetries. We also explore the unbroken
supersymmetries for two intersecting D-strings which are in uniform or relative
motion. For a finite uniform Lorentz boost, 16 supersymmetries are guaranteed
only when they are parallel. For an infinite one, 8 supersymmetries are
preserved only when both the D-strings are oriented to the forward or backward
direction of the boost. Under a finite relative boost, 8 supersymmetries are
preserved only when the intersecting angle is less than and the
intersecting point moves at the speed of light. As for an infinite relative
boost, 8 supersymmetries are preserved regardless of the values of the
intersecting angle.Comment: 27 pages using REVTeX4, 7 figure
Reference genome assembly for Australian Ascochyta rabiei Isolate ArME14
Ascochyta rabiei is the causal organism of ascochyta blight of chickpea and is present in chickpea crops worldwide. Here we report the release of a high-quality PacBio genome assembly for the Australian A. rabiei isolate ArME14. We compare the ArME14 genome assembly with an Illumina assembly for Indian A. rabiei isolate, ArD2. The ArME14 assembly has gapless sequences for nine chromosomes with telomere sequences at both ends and 13 large contig sequences that extend to one telomere. The total length of the ArME14 assembly was 40,927,385 bp, which was 6.26 Mb longer than the ArD2 assembly. Division of the genome by OcculterCut into GC-balanced and AT-dominant segments reveals 21% of the genome contains gene-sparse, AT-rich isochores. Transposable elements and repetitive DNA sequences in the ArME14 assembly made up 15% of the genome. A total of 11,257 protein-coding genes were predicted compared with 10,596 for ArD2. Many of the predicted genes missing from the ArD2 assembly were in genomic regions adjacent to AT-rich sequence. We compared the complement of predicted transcription factors and secreted proteins for the two A. rabiei genome assemblies and found that the isolates contain almost the same set of proteins. The small number of differences could represent real differences in the gene complement between isolates or possibly result from the different sequencing methods used. Prediction pipelines were applied for carbohydrate-active enzymes, secondary metabolite clusters and putative protein effectors. We predict that ArME14 contains between 450 and 650 CAZymes, 39 putative protein effectors and 26 secondary metabolite clusters
Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Compton-Belkovich Volcanic Complex
We reconstruct the abundance of thorium near the Compton-Belkovich Volcanic Complex on the Moon, using data from the Lunar Prospector Gamma Ray Spectrometer. We enhance the resolution via a pixon image reconstruction technique and find that the thorium is distributed over a larger (40km × 75 km) area than the (25km × 35 km) high-albedo region normally associated with Compton-Belkovich. Our reconstructions show that inside this region, the thorium concentration is 14–26ppm. We also find additional thorium, spread up to 300km eastward of the complex at ∼2 ppm. The thorium must have been deposited during the formation of the volcanic complex, because subsequent lateral transport mechanisms, such as small impacts, are unable to move sufficient material. The morphology of the feature is consistent with pyroclastic dispersal, and we conclude that the present distribution of thorium was likely created by the explosive eruption of silicic magma
Multiresolution analysis of active region magnetic structure and its correlation with the Mt. Wilson classification and flaring activity
Two different multi-resolution analyses are used to decompose the structure
of active region magnetic flux into concentrations of different size scales.
Lines separating these opposite polarity regions of flux at each size scale are
found. These lines are used as a mask on a map of the magnetic field gradient
to sample the local gradient between opposite polarity regions of given scale
sizes. It is shown that the maximum, average and standard deviation of the
magnetic flux gradient for alpha, beta, beta-gamma and beta-gamma-delta active
regions increase in the order listed, and that the order is maintained over all
length-scales. This study demonstrates that, on average, the Mt. Wilson
classification encodes the notion of activity over all length-scales in the
active region, and not just those length-scales at which the strongest flux
gradients are found. Further, it is also shown that the average gradients in
the field, and the average length-scale at which they occur, also increase in
the same order. Finally, there are significant differences in the gradient
distribution, between flaring and non-flaring active regions, which are
maintained over all length-scales. It is also shown that the average gradient
content of active regions that have large flares (GOES class 'M' and above) is
larger than that for active regions containing flares of all flare sizes; this
difference is also maintained at all length-scales.Comment: Accepted for publication in Solar Physic
From Fake Supergravity to Superstars
The fake supergravity method is applied to 5-dimensional asymptotically AdS
spacetimes containing gravity coupled to a real scalar and an abelian gauge
field. The motivation is to obtain bulk solutions with R x S^3 symmetry in
order to explore the AdS/CFT correspondence when the boundary gauge theory is
on R x S^3. A fake supergravity action, invariant under local supersymmetry
through linear order in fermion fields, is obtained. The gauge field makes
things more restrictive than in previous applications of fake supergravity
which allowed quite general scalar potentials. Here the superpotential must
take the form W(\phi) ~ exp(-k\phi) + c exp(2\phi/(3k)), and the only freedom
is the choice of the constant k. The fermion transformation rules of fake
supergravity lead to fake Killing spinor equations. From their integrability
conditions, we obtain first order differential equations which we solve
analytically to find singular electrically charged solutions of the Lagrangian
field equations. A Schwarzschild mass term can be added to produce a horizon
which shields the singularity. The solutions, which include "superstars", turn
out to be known in the literature. We compute their holographic parameters.Comment: 42 pages, 3 figure
"That's the world standard": a critical ethnography of "Universal" knowledge
This paper analyzes how knowledge is reproduced as "universal" in contemporary higher education and how this production of universality influences the application of knowledge. Using a case study of clinical psychology, it describes the results of over two years of ethnographic fieldwork in a university and professional settings in Singapore with short comparative field studies in Australia and the Netherlands. The results provide critical insights into the cultural effects and knowledge contestations within transnational higher education
The Giant Inflaton
We investigate a new mechanism for realizing slow roll inflation in string
theory, based on the dynamics of p anti-D3 branes in a class of mildly warped
flux compactifications. Attracted to the bottom of a warped conifold throat,
the anti-branes then cluster due to a novel mechanism wherein the background
flux polarizes in an attempt to screen them. Once they are sufficiently close,
the M units of flux cause the anti-branes to expand into a fuzzy NS5-brane,
which for rather generic choices of p/M will unwrap around the geometry,
decaying into D3-branes via a classical process. We find that the effective
potential governing this evolution possesses several epochs that can
potentially support slow-roll inflation, provided the process can be arranged
to take place at a high enough energy scale, of about one or two orders of
magnitude below the Planck energy; this scale, however, lies just outside the
bounds of our approximations.Comment: 31 pages, 4 figures, LaTeX. v2: references added, typos fixe
N=1* in 5 dimensions: Dijkgraaf-Vafa meets Polchinski-Strassler
One of the powerful techniques to analyze the 5 dimensional Super Yang Mills
theory with a massive hypermultiplet (N=1*) is provided by the AdS/CFT
correspondence. It predicts that, for certain special values of the
hypermultiplet mass, this theory develops nonperturbative branches of the
moduli space as well as new light degrees of freedom.
We use the higher dimensional generalization of the matrix model/gauge theory
correspondence and recover all the prediction of the supergravity analysis. We
construct the map between the four dimensional holomorphic superpotential and
the five dimensional action and explicitly show that the superpotential is flat
along the nonperturbative branches. This is the first instance in which the
Dijkgraaf-Vafa method is used to analyze intrinsically higher dimensional
phenomena.Comment: 28 pages, Late
- …