13 research outputs found

    Optimisation of Bee Pollen Extraction to Maximise Extractable Antioxidant Constituents

    No full text
    This paper presents the findings of a comprehensive review on common bee pollen processing methods which can impact extraction efficiency and lead to differences in measured total phenolic content (TPC) and radical scavenging activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) data. This hampers the comparative analysis of bee pollen from different floral sources and geographical locations. Based on the review, an in-depth investigation was carried out to identify the most efficient process to maximise the extraction of components for measurement of TPC, DPPH and FRAP antioxidant activity for two bee pollen samples from western Australia (Jarrah and Marri pollen). Optimisation by Design of Experiment with Multilevel Factorial Analysis (Categorical) modelling was performed. The independent variables included pollen pulverisation, the extraction solvent (70% aqueous ethanol, ethanol, methanol and water) and the extraction process (agitation, maceration, reflux and sonication). The data demonstrate that non-pulverised bee pollen extracted with 70% aqueous ethanol using the agitation extraction method constitute the optimal conditions to maximise the extraction of phenolics and antioxidant principles in these bee pollen samples

    Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys

    No full text
    This study reports on the total phenolic content and antioxidant activity as well as the phenolic compounds that are present in Calothamnus spp. (Red Bell), Agonis flexuosa (Coastal Peppermint), Corymbia calophylla (Marri) and Eucalyptus marginata (Jarrah) honeys from Western Australia. The honey’s total phenolic content (TPC) was determined using a modified Folin–Ciocalteu assay, while their total antioxidant activity was determined using FRAP and DPPH assays. Phenolic constituents were identified using a High Performance Thin-Layer Chromatography (HTPLC)-derived phenolic database, and the identified phenolic compounds were quantified using HPTLC. Finally, constituents that contribute to the honeys’ antioxidant activity were identified using a DPPH-HPTLC bioautography assay. Based on the results, Calothamnus spp. honey (n = 8) was found to contain the highest (59.4 ± 7.91 mg GAE/100 g) TPC, followed by Eucalyptus marginata honey (50.58 ± 3.76 mg GAE/100 g), Agonis flexuosa honey (36.08 ± 4.2 mg GAE/100 g) and Corymbia calophylla honey (29.15 ± 5.46 mg GAE/100 g). In the FRAP assay, Calothamnus spp. honey also had the highest activity (9.24 ± 1.68 mmol Fe2+/kg), followed by Eucalyptus marginata honey (mmol Fe2+/kg), whereas Agonis flexuosa (5.45 ± 1.64 mmol Fe2+/kg) and Corymbia calophylla honeys (4.48 ± 0.82 mmol Fe2+/kg) had comparable FRAP activity. In the DPPH assay, when the mean values were compared, it was found that Calothamnus spp. honey again had the highest activity (3.88 ± 0.96 mmol TE/kg) while the mean DPPH antioxidant activity of Eucalyptus marginata, Agonis flexuosa, and Corymbia calophylla honeys were comparable. Kojic acid and epigallocatechin gallate were found in all honeys, whilst other constituents (e.g., m-coumaric acid, lumichrome, gallic acid, taxifolin, luteolin, epicatechin, hesperitin, eudesmic acid, syringic acid, protocatechuic acid, t-cinnamic acid, o-anisic acid) were only identified in some of the honeys. DPPH-HPTLC bioautography demonstrated that most of the identified compounds possess antioxidant activity, except for t-cinnamic acid, eudesmic acid, o-anisic acid, and lumichrome

    A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey

    No full text
    The Folin-Ciocalteu assay is a widely used method for measuring the total phenolic content (TPC) in honey, but it can be affected by the presence of reducing sugars in honey, which can lead to interference and an over-estimation of its TPC. To optimize the Folin-Ciocalteu assay for honey analysis, the effect of pH on the assay was investigated. A number of pH scenarios were tested using different concentrations of Na2CO3 (0.00%, 0.75%, 0.94%, and 7.50%) in order to minimize reducing sugar interference and maximize the reaction of phenolics in the assay. The modified TPC method was then validated in accordance with current International Council on Harmonisation (ICH) guidelines. The findings of this study demonstrate that the traditional Folin-Ciocalteu assay (using 7.50% aqueous Na2CO3 solution, pH 10.8) leads to a significant overestimation of the TPC of honey due to the interference of reducing sugars. However, a pH of 7.9, achieved by using a 0.75% aqueous Na2CO3 solution, provides suitable conditions to account for most of the phenolic compounds without interference from reducing sugars. This finding was further confirmed by testing various sugar solutions and artificial honey which yielded TPC values below the established limit of detection and quantification of the assay. However, a slight increase in pH, even by a moderate deviation (pH 8.9), leads to significant discrepancies in absorbance readings, indicating that pH control is crucial for the accurate analysis of TPC in honey

    A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe

    No full text
    The aim of this review is to provide a comprehensive overview of the large variety of phenolic compounds that have to date been identified in a wide range of monofloral honeys found globally. The collated information is structured along several themes, including the botanical family and genus of the monofloral honeys for which phenolic constituents have been reported, the chemical classes the phenolic compounds can be attributed to, and the analytical method employed in compound determination as well as countries with a particular research focus on phenolic honey constituents. This review covers 130 research papers that detail the phenolic constituents of a total of 556 monofloral honeys. Based on the findings of this review, it can be concluded that most of these honeys belong to the Myrtaceae and Fabaceae families and that Robinia (Robinia pseudoacacia, Fabaceae), Manuka (Leptospermum scoparium, Myrtaceae), and Chestnut (Castanea sp., Fagaceae) honeys are to date the most studied honeys for phenolic compound determination. China, Italy, and Turkey are the major honey phenolic research hubs. To date, 161 individual phenolic compounds belonging to five major compound groups have been reported, with caffeic acid, gallic acid, ferulic acid and quercetin being the most widely reported among them. HPLC with photodiode array detection appears to be the most popular method for chemical structure identification

    Australian Honeypot Ant (Camponotus inflatus) Honey—A Comprehensive Analysis of the Physiochemical Characteristics, Bioactivity, and HPTLC Profile of a Traditional Indigenous Australian Food

    No full text
    Despite its cultural and nutritional importance for local Aboriginal people, the unusual insect honey produced by Western Australian honeypot ant (Camponotus inflatus) has to date been rarely investigated. This study reports on the honey’s physicochemical properties, its total phenolic, major sugars and 5-hydroxymethylfurfural contents, and its antioxidant activities. The honey’s color value is 467.63 mAU/63.39 mm Pfund, it has a pH of 3.85, and its electric conductivity is 449.71 µSiemens/cm. Its Brix value is 67.00, corresponding to a 33% moisture content. The total phenolics content is 19.62 mg gallic acid equivalent/100 g honey. Its antioxidant activity measured using the DPPH* (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing–antioxidant power) assays is 1367.67 µmol Trolox/kg and 3.52 mmol Fe+2/kg honey, respectively. Major sugars in the honey are glucose and fructose, with a fructose-to-glucose ratio of 0.85. Additionally, unidentified sugar was found in minor quantities
    corecore