1,022 research outputs found

    Design approaches and materials processes for ultrahigh efficiency lattice mismatched multi-junction solar cells

    Get PDF
    In this study, we report synthesis of large area (>2cm^2), crack-free GaAs and GaInP double heterostructures grown in a multi-junction solar cell-like structure by MOCVD. Initial solar cell data are also reported for GaInP top cells. These samples were grown on Ge/Si templates fabricated using wafer bonding and ion implantation induced layer transfer techniques. The double heterostructures exhibit radiative emission with uniform intensity and wavelength in regions not containing interfacial bubble defects. The minority carrier lifetime of ~1ns was estimated from photoluminescence decay measurements in both double heterostructures. We also report on the structural characteristics of heterostructures, determined via atomic force microscopy and transmission electron microscopy, and correlate these characteristics to the spatial variation of the minority carrier lifetime

    Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Get PDF
    Processes occurring in the tropical upper troposphere and lower stratosphere (UT/LS) are of importance for the global climate, for the stratospheric dynamics and air chemistry, and they influence the global distribution of water vapour, trace gases and aerosols. The mechanisms underlying cloud formation and variability in the UT/LS are of scientific concern as these still are not adequately described and quantified by numerical models. Part of the reasons for this is the scarcity of detailed in-situ measurements in particular from the Tropical Transition Layer (TTL) within the UT/LS. In this contribution we provide measurements of particle number densities and the amounts of non-volatile particles in the submicron size range present in the UT/LS over Southern Brazil, West Africa, and Northern Australia. The data were collected in-situ on board of the Russian high altitude research aircraft M-55 "Geophysica" using the specialised COPAS (COndensation PArticle counting System) instrument during the TROCCINOX (Araçatuba, Brazil, February 2005), the SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006) campaigns. The vertical profiles obtained are compared to those from previous measurements from the NASA DC-8 and NASA WB-57F over Costa Rica and other tropical locations between 1999 and 2007. The number density of the submicron particles as function of altitude was found to be remarkably constant (even back to 1987) over the tropical UT/LS altitude band such that a parameterisation suitable for models can be extracted from the measurements. At altitudes corresponding to potential temperatures above 430 K a slight increase of the number densities from 2005/2006 results from the data in comparison to the 1987 to 2007 measurements. The origins of this increase are unknown. By contrast the data from Northern hemispheric mid latitudes do not exhibit such an increase between 1999 and 2006. Vertical profiles of the non-volatile fraction of the submicron particles were also measured by a COPAS channel and are presented here. The resulting profiles of the non-volatile number density fraction show a pronounced maximum of 50% in the tropical TTL over Australia and West Africa. Below and above this fraction is much lower attaining values of 10% and smaller. In the lower stratosphere the fine particles mostly consist of sulphuric acid which is reflected in the low numbers of non-volatile residues measured by COPAS. Without detailed chemical composition measurements the reason for the increase of non-volatile particle fractions cannot yet be given. The long distance transfer flights to Brazil, Australia and West-Africa were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data measured during these transfers represent a "snapshot picture" documenting the status of a significant part of the global UT/LS aerosol (with sizes below 1 μm) at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are also presented in this paper in order to provide input on the UT/LS background aerosol for modelling purposes

    Hyperparathyroidism subsequent to radioactive iodine therapy for Graves\u27 disease

    Get PDF
    BACKGROUND: The development of primary hyperparathyroidism (PHPT) after radioactive iodine (RAI) treatment for thyroid disease is poorly characterized. The current study is the largest reported cohort and assesses the disease characteristics of patients treated for PHPT with a history of RAI exposure. METHODS: A retrospective analysis comparing patients, with and without a history of RAI treatment, who underwent surgery for PHPT. RESULTS: Twenty-eight of the 469 patients had a history of RAI treatment, all for Graves\u27 disease. Patients with a history of RAI exposure had similar disease characteristics compared to control; however, patients with a history of RAI treatment had a higher rate of recurrence (7.4% vs 1.2%, p = 0.012). CONCLUSION: PHPT in patients with a history of RAI treatment can be approached in the same manner as RAI naive PHPT patients; however, the risk of recurrence of PHPT in RAI exposed patients may be higher

    Wide-band-gap InAlAs solar cell for an alternative multijunction approach

    Get PDF
    We have fabricated an In_(0.52)Al_(0.48)As solar cell lattice-matched to InP with efficiency higher than 14% and maximum external quantum efficiency equal to 81%. High quality, dislocation-free In_xAl_(1−x)As alloyed layers were used to fabricate the single junction solar cell. Photoluminescence of In_xAl_(1−x)As showed good material quality and lifetime of over 200 ps. A high band gap In_(0.35)Al_(0.65)As window was used to increase light absorption within the p-n absorber layer and improve cell efficiency, despite strain. The InAlAs top cell reported here is a key building block for an InP-based three junction high efficiency solar cell consisting of InAlAs/InGaAsP/InGaAs lattice-matched to the substrate

    Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Get PDF
    Processes occurring in the tropical upper troposphere (UT), the Tropical Transition Layer (TTL), and the lower stratosphere (LS) are of importance for the global climate, for stratospheric dynamics and air chemistry, and for their influence on the global distribution of water vapour, trace gases and aerosols. In this contribution we present aerosol and trace gas (in-situ) measurements from the tropical UT/LS over Southern Brazil, Northern Australia, and West Africa. The instruments were operated on board of the Russian high altitude research aircraft M-55 "Geophysica" and the DLR Falcon-20 during the campaigns TROCCINOX (Araçatuba, Brazil, February 2005), SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006). The data cover submicron particle number densities and volatility from the COndensation PArticle counting System (COPAS), as well as relevant trace gases like N2O, ozone, and CO. We use these trace gas measurements to place the aerosol data into a broader atmospheric context. Also a juxtaposition of the submicron particle data with previous measurements over Costa Rica and other tropical locations between 1999 and 2007 (NASA DC-8 and NASA WB-57F) is provided. The submicron particle number densities, as a function of altitude, were found to be remarkably constant in the tropical UT/LS altitude band for the two decades after 1987. Thus, a parameterisation suitable for models can be extracted from these measurements. Compared to the average levels in the period between 1987 and 2007 a slight increase of particle abundances was found for 2005/2006 at altitudes with potential temperatures, theta, above 430 K. The origins of this increase are unknown except for increases measured during SCOUT-AMMA. Here the eruption of the Soufrière Hills volcano in the Caribbean caused elevated particle mixing ratios. The vertical profiles from Northern hemispheric mid-latitudes between 1999 and 2006 also are compact enough to derive a parameterisation. The tropical profiles all show a broad maximum of particle mixing ratios (between theta ~ 340 K and 390 K) which extends from below the TTL to above the thermal tropopause. Thus these particles are a "reservoir" for vertical transport into the stratosphere. The ratio of non-volatile particle number density to total particle number density was also measured by COPAS. The vertical profiles of this ratio have a maximum of 50% above 370 K over Australia and West Africa and a pronounced minimum directly below. Without detailed chemical composition measurements a reason for the increase of non-volatile particle fractions cannot yet be given. However, half of the particles from the tropical "reservoir" contain compounds other than sulphuric acid and water. Correlations of the measured aerosol mixing ratios with N2O and ozone exhibit compact relationships for the tropical data from SCOUT-AMMA, TROCCINOX, and SCOUT-O3. Correlations with CO are more scattered probably because of the connection to different pollution source regions. We provide additional data from the long distance transfer flights to the campaign sites in Brazil, Australia, and West-Africa. These were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data represent a "snapshot picture" documenting the status of a significant part of the global UT/LS fine aerosol at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are presented in this paper to provide data of the UT/LS background aerosol for modelling purposes

    Interview with Daniel L. Greenberg

    Get PDF
    For transcript, click the Download button above. For video index, click the link below. Daniel L. Greenberg oversees the pro bono program at Schulte Roth & Zable LLP. From 1987 to 1995 he directed clinical legal programs at Harvard Law School, and from 1995 to 2004 he was executive director of New York City\u27s Legal Aid Society. He has been named an honorary fellow of Penn Law School

    Ponderomotive Control of Quantum Macroscopic Coherence

    Full text link
    It is shown that because of the radiation pressure a Schr\"odinger cat state can be generated in a resonator with oscillating wall. The optomechanical control of quantum macroscopic coherence and its detection is taken into account introducing new cat states. The effects due to the environmental couplings with this nonlinear system are considered developing an operator perturbation procedure to solve the master equation for the field mode density operator.Comment: Latex,22 pages,accepted by Phys.Rev.

    Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%

    Get PDF
    An approach for an all lattice-matched multijunction solar cell optimized design is presented with 5.807 Å lattice constant, together with a detailed analysis of its performance by means of full device modeling. The simulations show that a (1.93 eV)In_(0.37)Al_(0.63)As/(1.39 eV)In_(0.38)Ga_(0.62)As_(0.57)P_(0.43)/(0.94 eV)In_(0.38)Ga_(0.62)As 3-junction solar cell can achieve efficiencies >51% under 100-suns illumination (with V_(oc) = 3.34 V). As a key proof of concept, an equivalent 3-junction solar cell lattice-matched to InP was fabricated and tested. The independently connected single junction solar cells were also tested in a spectrum splitting configuration, showing similar performance to a monolithic tandem device, with V_(oc) = 1.8 V
    corecore