84 research outputs found

    Influence of general anaesthesia on slow waves of intracranial pressure.

    Get PDF
    OBJECTIVE: Slow vasogenic intracranial pressure (ICP) waves are spontaneous ICP oscillations with a low frequency bandwidth of 0.3-4 cycles/min (B-waves). B-waves reflect dynamic oscillations in cerebral blood volume associated with autoregulatory cerebral vasodilation and vasoconstriction. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared to natural sleep and conscious state. MATERIALS AND METHODS: The magnitude of B-waves was assessed in 4 groups of 30 patients each with clinical indications for ICP monitoring. Normal pressure hydrocephalus patients undergoing Cerebrospinal Fluid (CSF) infusion studies in the conscious state (GROUP A) and under GA (GROUP B), and hydrocephalus patients undergoing overnight ICP monitoring during physiological sleep (GROUP C) were compared to deeply sedated traumatic brain injury (TBI) patients with well-controlled ICP during the first night of Intensive Care Unit (ICU) stay (GROUP D). RESULTS: A total of 120 patients were included. During CSF infusion studies, the magnitude of slow waves was higher in conscious patients ( GROUP A: 0.23+/-0.10 mm Hg) when compared to anaesthetised patients ( GROUP B: 0.15+/-0.10 mm Hg; p = 0.011). Overnight magnitude of slow waves was higher in patients during natural sleep (GROUP C: 0.20+/-0.13 mm Hg) when compared to TBI patients under deep sedation (GROUP D: 0.11+/- 0.09 mm Hg; p = 0.002). CONCLUSION: GA and deep sedation are associated with a reduced magnitude of B-waves. ICP monitoring carried out under GA is affected by iatrogenic suppression of slow vasogenic waves of ICP. Accounting for the effects of anaesthesia on vasogenic waves may prevent the misidentification of potential shunt-responders as non-responders.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/01616412.2016.1189200

    Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study

    Get PDF
    BACKGROUND: The invasive nature of the current methods for monitoring of intracranial pressure (ICP) has prevented their use in many clinical situations. Several attempts have been made to develop methods to monitor ICP non-invasively. The aim of this study is to assess the relationship between ultrasound-based non-invasive ICP (nICP) and invasive ICP measurement in neurocritical care patients. METHODS AND FINDINGS: This was a prospective, single-cohort observational study of patients admitted to a tertiary neurocritical care unit. Patients with brain injury requiring invasive ICP monitoring were considered for inclusion. nICP was assessed using optic nerve sheath diameter (ONSD), venous transcranial Doppler (vTCD) of straight sinus systolic flow velocity (FVsv), and methods derived from arterial transcranial Doppler (aTCD) on the middle cerebral artery (MCA): MCA pulsatility index (PIa) and an estimator based on diastolic flow velocity (FVd). A total of 445 ultrasound examinations from 64 patients performed from 1 January to 1 November 2016 were included. The median age of the patients was 53 years (range 37–64). Median Glasgow Coma Scale at admission was 7 (range 3–14), and median Glasgow Outcome Scale was 3 (range 1–5). The mortality rate was 20%. ONSD and FVsv demonstrated the strongest correlation with ICP (R = 0.76 for ONSD versus ICP; R = 0.72 for FVsv versus ICP), whereas PIa and the estimator based on FVd did not correlate with ICP significantly. Combining the 2 strongest nICP predictors (ONSD and FVsv) resulted in an even stronger correlation with ICP (R = 0.80). The ability to detect intracranial hypertension (ICP ≥ 20 mm Hg) was highest for ONSD (area under the curve [AUC] 0.91, 95% CI 0.88–0.95). The combination of ONSD and FVsv methods showed a statistically significant improvement of AUC values compared with the ONSD method alone (0.93, 95% CI 0.90–0.97, p = 0.01). Major limitations are the heterogeneity and small number of patients included in this study, the need for specialised training to perform and interpret the ultrasound tests, and the variability in performance among different ultrasound operators. CONCLUSIONS: Of the studied ultrasound nICP methods, ONSD is the best estimator of ICP. The novel combination of ONSD ultrasonography and vTCD of the straight sinus is a promising and easily available technique for identifying critically ill patients with intracranial hypertension.DC and MC are partially supported by NIHR Brain Injury Healthcare Technology Co-operative, Cambridge, UK. JD is supported by a Woolf Fisher Scholarship (NZ). PJAH is supported by the National Institute for Health Research Cambridge BRC as a Research Professor of Neurosurgery. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A stochastic differential equation analysis of cerebrospinal fluid dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data.</p> <p>Methods</p> <p>The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP.</p> <p>Results</p> <p>The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise.</p> <p>Conclusions</p> <p>Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.</p

    Targeted temperature control following traumatic brain injury:ESICM/NACCS best practice consensus recommendations

    Get PDF
    Aims and scope: The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. Methods: A group of 18 international neuro-intensive care experts in the acute management of TBI participated in a modified Delphi process. An online anonymised survey based on a systematic literature review was completed ahead of the meeting, before the group convened to explore the level of consensus on TTC following TBI. Outputs from the meeting were combined into a further anonymous online survey round to finalise recommendations. Thresholds of ≥ 16 out of 18 panel members in agreement (≥ 88%) for strong consensus and ≥ 14 out of 18 (≥ 78%) for moderate consensus were prospectively set for all statements. Results: Strong consensus was reached on TTC being essential for high-quality TBI care. It was recommended that temperature should be monitored continuously, and that fever should be promptly identified and managed in patients perceived to be at risk of secondary brain injury. Controlled normothermia (36.0–37.5 °C) was strongly recommended as a therapeutic option to be considered in tier 1 and 2 of the Seattle International Severe Traumatic Brain Injury Consensus Conference ICP management protocol. Temperature control targets should be individualised based on the perceived risk of secondary brain injury and fever aetiology. Conclusions: Based on a modified Delphi expert consensus process, this report aims to inform on best practices for TTC delivery for patients following TBI, and to highlight areas of need for further research to improve clinical guidelines in this setting.</p

    Safety profile of enhanced thromboprophylaxis strategies for critically ill COVID-19 patients during the first wave of the pandemic: observational report from 28 European intensive care units

    Get PDF
    Introduction: Critical illness from SARS-CoV-2 infection (COVID-19) is associated with a high burden of pulmonary embolism (PE) and thromboembolic events despite standard thromboprophylaxis. Available guidance is discordant, ranging from standard care to the use of therapeutic anticoagulation for enhanced thromboprophylaxis (ET). Local ET protocols have been empirically determined and are generally intermediate between standard prophylaxis and full anticoagulation. Concerns have been raised in regard to the potential risk of haemorrhage associated with therapeutic anticoagulation. This report describes the prevalence and safety of ET strategies in European Intensive Care Unit (ICUs) and their association with outcomes during the first wave of the COVID pandemic, with particular focus on haemorrhagic complications and ICU mortality. Methods: Retrospective, observational, multi-centre study including adult critically ill COVID-19 patients. Anonymised data included demographics, clinical characteristics, thromboprophylaxis and/or anticoagulation treatment. Critical haemorrhage was defined as intracranial haemorrhage or bleeding requiring red blood cells transfusion. Survival was collected at ICU discharge. A multivariable mixed effects generalised linear model analysis matched for the propensity for receiving ET was constructed for both ICU mortality and critical haemorrhage. Results: A total of 852 (79% male, age 66 [37\u201385] years) patients were included from 28 ICUs. Median body mass index and ICU length of stay were 27.7 (25.1\u201330.7) Kg/m2 and 13&nbsp;(7\u201322) days, respectively. Thromboembolic events were reported in 146 patients (17.1%), of those 78 (9.2%) were PE. ICU mortality occurred in 335/852 (39.3%) patients. ET was used in 274 (32.1%) patients, and it was independently associated with significant reduction in ICU mortality (log odds = 0.64 [95% CIs 0.18\u20131.1; p = 0.0069]) but not an increased risk of critical haemorrhage (log odds = 0.187 [95%CI 12 0.591 to 12 0.964; p = 0.64]). Conclusions: In a cohort of critically ill patients with a high prevalence of thromboembolic events, ET was associated with reduced ICU mortality without an increased burden of haemorrhagic complications. This study suggests ET strategies are safe and associated with favourable outcomes. Whilst full anticoagulation has been questioned for prophylaxis in these patients, our results suggest that there may nevertheless be a role for enhanced / intermediate levels of prophylaxis. Clinical trials investigating causal relationship between intermediate thromboprophylaxis and clinical outcomes are urgently needed

    Clinical and organizational factors associated with mortality during the peak of first COVID-19 wave: the global UNITE-COVID study

    Get PDF
    Purpose: To accommodate the unprecedented number of critically ill patients with pneumonia caused by coronavirus disease 2019 (COVID-19) expansion of the capacity of intensive care unit (ICU) to clinical areas not previously used for critical care was necessary. We describe the global burden of COVID-19 admissions and the clinical and organizational characteristics associated with outcomes in critically ill COVID-19 patients. Methods: Multicenter, international, point prevalence study, including adult patients with SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) and a diagnosis of COVID-19 admitted to ICU between February 15th and May 15th, 2020. Results: 4994 patients from 280 ICUs in 46 countries were included. Included ICUs increased their total capacity from 4931 to 7630 beds, deploying personnel from other areas. Overall, 1986 (39.8%) patients were admitted to surge capacity beds. Invasive ventilation at admission was present in 2325 (46.5%) patients and was required during ICU stay in 85.8% of patients. 60-day mortality was 33.9% (IQR across units: 20%–50%) and ICU mortality 32.7%. Older age, invasive mechanical ventilation, and acute kidney injury (AKI) were associated with increased mortality. These associations were also confirmed specifically in mechanically ventilated patients. Admission to surge capacity beds was not associated with mortality, even after controlling for other factors. Conclusions: ICUs responded to the increase in COVID-19 patients by increasing bed availability and staff, admitting up to 40% of patients in surge capacity beds. Although mortality in this population was high, admission to a surge capacity bed was not associated with increased mortality. Older age, invasive mechanical ventilation, and AKI were identified as the strongest predictors of mortality

    Delirium and agitation in traumatic brain injury patients: an update on pathological hypotheses and treatment options

    No full text
    Traumatic brain injury (TBI) is a global public health epidemic. It represents the principal cause of death and disability in individuals under 35 in the United States. In the subacute phase, severe TBI patients who recover consciousness go through a state of agitation and delirium. However, there is only limited research exploring the characteristics of post-traumatic delirium (PTD) although it is likely to be more frequent than in general Intensive Care Unit (ICU) patients. Evidence suggest the incidence of delirium in non-TBI ICU patients is up to 86%. The exact pathophysiological mechanisms underlying the development and progression of delirium in critically ill patients is still unclear. Many hypotheses have been proposed to play a role: neuroinflammation, neurotransmitter imbalance, structural and functional brain damage. TBI patients are at high risk of post-traumatic cognitive impairment, and up to two thirds of patients who survive TBI develop agitation and delirium which is associated with increased disability and long term cognitive impairment. Recommendation for the treatment of PTD in patients admitted to ICU are not clearly identified. Despite the high prevalence of PTD, the condition often goes misrecognised and attributed primarily to the injury itself. There is increasing evidence that certain drugs such as antipsychotics can reduce the incidence and severity of delirium, whereas other drugs such as dexmedetomidine and remifentanil are associated with decreased risk of developing delirium in general ICU patients. However, there is a lack of high quality studies exploring treatment strategies for PTD in the acute setting
    • …
    corecore