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Abstract

Background

The invasive nature of the current methods for monitoring of intracranial pressure (ICP) has

prevented their use in many clinical situations. Several attempts have been made to develop

methods to monitor ICP non-invasively. The aim of this study is to assess the relationship

between ultrasound-based non-invasive ICP (nICP) and invasive ICP measurement in neu-

rocritical care patients.

Methods and findings

This was a prospective, single-cohort observational study of patients admitted to a tertiary

neurocritical care unit. Patients with brain injury requiring invasive ICP monitoring were con-

sidered for inclusion. nICP was assessed using optic nerve sheath diameter (ONSD),

venous transcranial Doppler (vTCD) of straight sinus systolic flow velocity (FVsv), and meth-

ods derived from arterial transcranial Doppler (aTCD) on the middle cerebral artery (MCA):

MCA pulsatility index (PIa) and an estimator based on diastolic flow velocity (FVd). A total of

445 ultrasound examinations from 64 patients performed from 1 January to 1 November

2016 were included. The median age of the patients was 53 years (range 37–64). Median

Glasgow Coma Scale at admission was 7 (range 3–14), and median Glasgow Outcome

Scale was 3 (range 1–5). The mortality rate was 20%. ONSD and FVsv demonstrated the

strongest correlation with ICP (R = 0.76 for ONSD versus ICP; R = 0.72 for FVsv versus

ICP), whereas PIa and the estimator based on FVd did not correlate with ICP significantly.

Combining the 2 strongest nICP predictors (ONSD and FVsv) resulted in an even stronger

correlation with ICP (R = 0.80). The ability to detect intracranial hypertension (ICP� 20 mm
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Hg) was highest for ONSD (area under the curve [AUC] 0.91, 95% CI 0.88–0.95). The com-

bination of ONSD and FVsv methods showed a statistically significant improvement of AUC

values compared with the ONSD method alone (0.93, 95% CI 0.90–0.97, p = 0.01). Major

limitations are the heterogeneity and small number of patients included in this study, the

need for specialised training to perform and interpret the ultrasound tests, and the variability

in performance among different ultrasound operators.

Conclusions

Of the studied ultrasound nICP methods, ONSD is the best estimator of ICP. The novel

combination of ONSD ultrasonography and vTCD of the straight sinus is a promising and

easily available technique for identifying critically ill patients with intracranial hypertension.

Author summary

Why was this study done?

• Intracranial pressure (ICP) monitoring is necessary in many clinical scenarios.

• Invasive ICP methods are the gold standard, but have many contraindications. Never-

theless, non-invasive ICP (nICP) measurement is a poorly developed technique.

• We present a study comparing ultrasound-based nICP measurement techniques with

the gold standard.

What did the researchers do and find?

• In a cohort of 64 patients with brain injury, we compared invasive ICP measurement

with 3 different ultrasound-based measurements of nICP: optic nerve sheath diameter

(ONSD) ultrasonography, arterial transcranial doppler (aTCD)–derived methods, and

straight sinus systolic flow velocity (FVsv).

• We found that both optic nerve sheath diameter ultrasonography (ONSD) and straight

sinus systolic flow velocity (FVsv) are strongly correlated with invasive ICP. In addition,

the combination of these 2 nICP parameters (ONSD and FVsv) resulted in stronger cor-

relation with ICP.

What do these findings mean?

• A novel nICP monitoring method based on combined ONSD ultrasonography and

venous transcranial Doppler has shown promising results for the measurement of intra-

cranial pressure in patients with brain injury.

• This ultrasound-based method is low-cost, quick, and based on technology widely

available.

• Future prospective studies will be needed to validate these results.

Ultrasound based non-invasive ICP
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Introduction

Intracranial hypertension is a frequent and harmful complication of brain injury; it is an

important contributing factor for secondary brain injury, and its severity and duration have

been correlated with a fatal outcome [1,2].

A recent trial comparing an invasive intracranial pressure (ICP) monitoring protocol with

a protocol based on imaging and clinical examination found no significant differences in

patient outcome [3]. However, the trial has been criticised for being underpowered and for the

methodology used to measure and treat ICP. Thus, invasive monitoring and treatment of

intracranial hypertension is still widely recommended in the management of severely brain-

injured patients despite a paucity of randomized evidence [4].

Invasive ICP monitoring through an intraventricular catheter or intraparenchymal micro-

transducer continues to be the standard of care after severe traumatic brain injury, and should

be performed when indications are met [5]. Because the use of invasive transducers can cause

complications including infection or haemorrhage [6–8], reliable non-invasive ICP (nICP)

estimation would be helpful, especially in clinical situations where the risk–benefit balance of

invasive ICP monitoring is unclear or when ICP monitoring is not immediately available or is

even contraindicated [4]. Several non-invasive methods based on transcranial Doppler and

optic nerve sheath diameter (ONSD) ultrasound are gaining clinical popularity due to their

safety, availability, and reliability [8–13]. At present, the best accuracy for a non-invasive

method reported in the literature [14,15] has been demonstrated by 2-depth high-resolution

transcranial Doppler insonation of the ophthalmic artery. This method does not need calibra-

tion and is based on the measurement of the balance point when the measured parameters of

blood flow velocity waveforms in the intracranial segment of the ophthalmic artery (which

reflect ICP) are identical to extracranial segments (which are mechanically compressed by an

externally applied pressure). Other authors [16,17] have proposed different methods for con-

tinuous nICP monitoring based on the waveform analysis of cerebral blood flow velocity from

the middle cerebral artery (MCA) and arterial pressure. However, despite these promising

results, non-invasive techniques remain of insufficient accuracy and temporal resolution to

replace invasive ICP monitoring [18,19].

The aim of this study was to compare the accuracy of different ultrasound-based methods

for nICP measurement in patients with severe traumatic brain injury undergoing invasive ICP

monitoring. Such methods included the ultrasound measurement of the ONSD, venous tran-

scranial Doppler (vTCD), and derived indices obtained from the straight sinus (such as

straight sinus systolic flow velocity [FVsv]), and arterial transcranial Doppler (aTCD)–derived

indices such as middle cerebral artery (MCA) pulsatility index (PIa) and diastolic flow velocity

(FVd).

Methods

This is a single-centre, prospective observational study conducted from 1 January 2016 to 1

November 2016. Recruited patients were admitted at the Neurosciences Critical Care Unit,

Addenbrooke’s Hospital, Cambridge, UK. The protocol was approved by the research ethics

boards at the University of Cambridge (REC 15/lo/1918), and written consent was obtained

from all participants’ next of kin. The article is reported as per Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) reporting guidelines (S1 Text). Patients

older than 18 years requiring sedation, mechanical ventilation, and ICP monitoring with an

admission diagnosis of severe traumatic brain injury, aneurysmal subarachnoid haemorrhage,

intraparenchymal haemorrhage, or stroke were considered for inclusion. Exclusion criteria

Ultrasound based non-invasive ICP
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were the following: the absence of an informed consent, a known history of ocular pathology

or optic nerve trauma, skull base fracture with a cerebrospinal fluid (CSF) leak, inaccessible

ultrasound windows (temporal for aTCD and occipital for vTCD), and clinical or radiological

suspicion of cerebral venous thrombosis or vasospasm.

Patient monitoring

Patients were sedated with a continuous infusion of propofol or midazolam, fentanyl, and,

when necessary, the muscle relaxant atracurium besylate. Mechanical ventilation was tar-

geted to maintain adequate oxygenation (SaO2 > 90%) and normocapnia (PaCO2 = 35–40

mm Hg). Intravenous fluids, vasopressors, and inotropic support (norepinephrine and/or

epinephrine) were administered to achieve and maintain an adequate cerebral perfusion

pressure (CPP > 60 mm Hg). Clinical management was in accordance to international

guidelines [20–22].

Treatment of intracranial hypertension was based on a protocol-driven strategy, which

included optimisation of arterial blood pressure (ABP) and volaemia, sedation, and infusion of

hyperosmolar fluids according to our institutional guidelines.

After a decision to place an ICP monitoring device (by the neurosurgical and intensive care

physician in charge), patients were enrolled in the study. ICP was measured via an intrapar-

enchymal probe (Codman & Shurtleff, Raynham, Massachusetts, US) or a catheter inserted

into the brain ventricles and connected to an external pressure transducer and drainage system

(Codman, Johnson & Johnson, Raynham, Massachusetts, US).

For each patient, we collected the following characteristics: admission Glasgow Coma Scale

(GCS), age, sex, height, weight, comorbidities, mechanism and severity of brain injury, and

discharge Glasgow Outcome Scale (GOS). The Rotterdam and Marshall scores as well as the

Fisher scale were calculated using the admission computer tomography head scan reports [22].

Ultrasound measurements

Ultrasound measurement was performed by a selected group of experienced operators (TT, JP,

MB) using a standardised insonation technique to reduce inter-operator variability. The oper-

ators were blinded to the patient’s admission diagnosis, demographics, baseline characteristics,

and clinical and physiological background. Operators were not blinded to the actual ICP, but

they were blinded to the final formulae to obtain a nICP estimation from the different mea-

surements. Mean arterial blood pressure, end-tidal carbon dioxide partial pressure (ETCO2),

MCA flow velocities (diastolic [FVd], mean [FVm], and systolic [FVs]), straight sinus flow

velocities (diastolic [FVdv], mean [FVmv], and systolic [FVsv]), and ONSD were recorded twice

daily from day 1 to day 5 after ICP insertion. Additional measurements were performed in

case of acute increases in ICP (above 20 mm Hg). In cases where ICP mean values changed

more than ±2 mm Hg during any of the 3 studies (ONSD ultrasound, vTCD, and aTCD), the

measurements were excluded from the analysis.

ONSD. Ultrasound examination of the ONSD was performed using a 7.5-MHz linear

ultrasound probe (11L4, Xario 200; Toshiba, Zoetermeer, The Netherlands) using the lowest

possible acoustic power that could measure the ONSD. The probe was oriented perpendicu-

larly in the vertical plane and at around 30 degrees in the horizontal plane on the closed eyelids

of both eyes of individuals in supine position with head elevated to 30 degrees. Ultrasound gel

was applied on the surface of each eyelid and the measurements were made in the axial and

sagittal planes of the widest diameter visible 3 mm behind the retina in both eyes. The final

ONSD value was calculated by averaging 4 measured values, as previously described [23,24].

Ultrasound based non-invasive ICP
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Transcranial Doppler. aTCD was performed bilaterally on the MCA through the tempo-

ral window using a traditional 2-MHz transducer (5S2, Xario 20; Toshiba, Zoetermeer, The

Netherlands) with head elevated to 30 degrees, as previously described [23,25]. The final values

of flow velocities were calculated by averaging the 2 measured values.

vTCD was performed on the straight sinus using a 2-MHz transducer (5S2, Xario 20;

Toshiba, Zoetermeer, The Netherlands) through an occipital and transforaminal bone window

at a depth of 50 to 80 mm for flow directed toward the probe, as previously described [25].

Statistical analysis

On the basis of previous reports [25–27], we hypothesized that ICP is linearly associated with

ONSD, systolic flow velocity on the straight sinus (FVsv), PIa, and ABP × (1 − FVd/FVm), and

verified this hypothesis in 64 patients. A multivariable linear regression model was obtained

from the relationship among ICP, ONSD, and FVsv to derive an nICP estimator based on the

combination of ONSD and FVsv (nICPONSD+FVsv).

Deviations from the initial statistical plan (S2 Text) were based on reviewers’ requests and

consisted of inclusion of linear mixed effects model analysis for the determination of the esti-

mation formulas for nICP and exclusion of Bland–Altman analysis.

Statistical analysis of the data was conducted with RStudio software (R version 3.1.2). Ini-

tially, multiple measurement points were averaged for each patient; therefore, every patient

was represented by one single value for all variables assessed. Then, the correlations between

ICP and the variables of interest—ONSD, PIa, ABP × (1 − FVd/FVm), and FVsv—were verified

using the Pearson correlation coefficient (R, with the level of significance set at 0.05).

To provide prediction models for ICP estimation, the relationships between ICP and the

correlated variables were expressed as linear mixed effects models (R package lme4 [28]). As

fixed effects, we entered ICP and the non-invasive estimators into the model. As random

effects, we had intercepts and slopes for the repeated measurement points for each patient

(N = 445 measurements). A mixed effects multiple regression between ICP and 2 correlated

variables, ONSD and FVsv, was also performed. Chi-square (χ2) values and p-values for the

comparison of the models were obtained by likelihood ratio tests of the full model with ran-

dom intercepts and slopes against the null model with random intercepts only.

The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was

calculated to determine the ability of the non-invasive methods to detect raised ICP (using a

threshold of 20 mm Hg; N = 445 measurements). Moreover, we also performed an analysis to

determine the best ONSD and FVsv cutoff values for prediction of ICP� 20 mm Hg. In ROC

analysis, these are the values presenting the best sensitivity and specificity for prediction of a

given threshold. The predicting ability is considered reasonable when the AUC is higher than

0.7 and strong when the AUC exceeds 0.8 [29]. Statistical differences between ROC curves

were verified using the DeLong’s test for 2 correlated ROC curves (R package pROC [30]).

An analysis of variance (ANOVA) was performed to verify whether any of the variables

assessed were associated with mortality in the patient cohort.

Results

In all, 80 patients with intracranial pathology requiring invasive ICP monitoring were initially

considered for enrolment in this study. Among these, 3 were excluded because of the absence

of written consent, 2 because it was not possible to find a temporal window, 6 because the

occipital window was inaccessible (cervical collar or patient position), 3 because the straight

sinus could not be insonated, and 2 because of ocular lesions that precluded the assessment of

ONSD.

Ultrasound based non-invasive ICP
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A total of 445 recordings from 64 patients (each one including ONSD ultrasound, aTCD,

and vTCD) were included in the final analysis. The percentage of measurements presenting

ICP� 20 mm Hg was 19.3% (N = 86). The characteristics of the patients are shown in Table 1.

In Table 2, we present the median (interquartile range [IQR]) values of the variables analysed.

nICP measurement

The correlation analysis between patients revealed good correlation between ICP and

ONSD (R = 0.76) and between ICP and FVsv (R = 0.72), averaged per patient (N = 64)—

both were statistically significant (p< 0.001) and without any influential outliers. The p-val-

ues for the correlations between ICP and PIa and ABP × (1 − FVd/FVm) were both non-sig-

nificant (p = 0.63 and p = 0.36, respectively). Thus, the regression formulas adopted in this

work considered only ONSD and FVsv, and the combination of both in a multiple regres-

sion model (Table 3).

Considering the variability in slopes between patients, full models allowing for random

intercepts and slopes were significantly better at fitting the data than null models for a nICP

estimator based on FVsv (nICPFVsv) and for nICPONSD+FVsv (χ2 = 44.19, p< 0.001, and χ2 =

40.92, p< 0.001, respectively). The inclusion of random slopes in the model describing a nICP

estimator based on ONSD (nICPONSD) did not produce a significant difference in comparison

to the model with random intercepts only (χ2 = 2.41, p = 0.30). The formulas of the derived

Table 1. Baseline characteristics of the patient cohort.

Characteristic N (%) or median (IQR)

Total number 64

Male sex 49 (76.6%)

Age (years) 53 (37–64)

Height (cm) 175 (165–180)

Weight (kg) 78 (67–87)

Pathology

Traumatic brain injury 45 (70.3%)

Aneurysmal subarachnoid haemorrhage 15 (23.4%)

Intracranial haemorrhage 4 (6.3%)

Comorbidities

Hypertension 7 (10.9%)

Depression 12 (18.7%)

Asthma 6 (9.4%)

Alcohol abuse 23 (35.9%)

Smokers 21 (32.8%)

Previous myocardial infarction 1 (3.1%)

GCS at admission 7 (3–14)

GOS at discharge 3 (1–5)

Complications

Chest infection 12 (18.7%)

Sepsis 2 (3.1%)

Ventriculitis 1 (1.5%)

Post-traumatic ARDS 2 (3.1%)

ARDS, acute respiratory distress syndrome; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Scale;

IQR, interquartile range.

https://doi.org/10.1371/journal.pmed.1002356.t001
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models that best fitted the data are described below:

nICPONSD ¼ 5:00�ONSD � 13:92 ðmm HgÞ ð1Þ

nICPFVsv ¼ 0:38� FVsv þ 0:0005 ðmm HgÞ ð2Þ

nICPONSDþFVsv ¼ 4:23�ONSDþ 0:14� FVsv � 14:51 ðmm HgÞ ð3Þ

Accuracy of the nICP methods

The correlation coefficient between the ONSD method and ICP averaged per patient (N = 64)

was R = 0.76; the FVsv method showed a correlation with ICP of R = 0.72. The combination of

Table 2. Median (IQR) values of the studied parameters.

Parameter Definition Median (IQR)

ICP (mm Hg) Intracranial pressure 10 (5–17)

CPP (mm Hg) Cerebral perfusion pressure 79 (70–87)

ABPm (mm Hg) Mean arterial blood pressure 90 (85–100)

PaCO2 (mm Hg) Partial pressure of CO2 5.20 (4.90–5.90)

ONSD (mm) Optic nerve sheath diameter 4.9 (4.2–6.0)

FVs (cm/s) MCA systolic flow velocity (aTCD) 105 (97–114)

FVd (cm/s) MCA diastolic flow velocity (aTCD) 48 (42–56)

FVm (cm/s) MCA mean flow velocity (aTCD) 68.67 (59.67–75.00)

FVsv (cm/s) Straight sinus systolic flow velocity (vTCD) 30 (22–39)

FVdv (cm/s) Straight sinus diastolic flow velocity (vTCD) 13 (12–18)

FVmv (cm/s) Straight sinus mean flow velocity (vTCD) 18.67 (15.67–24.67)

PIa MCA pulsatility index (aTCD) 0.86 (0.67–1.04)

aTCD, arterial transcranial Doppler; IQR, interquartile range; MCA, middle cerebral artery; vTCD, venous transcranial Doppler.

https://doi.org/10.1371/journal.pmed.1002356.t002

Table 3. Summary of the linear mixed effects models of ICP and the non-invasive estimators across all measurement points (N = 445).

Full model Null model

Estimate 95% CI p-Value Estimate 95% CI p-Value

nICPONSD

ONSD 4.90 4.39 to 5.38 <0.001 5.00 4.64 to 5.36 <0.001

Intercept −13.47 −16.05 to −10.84 — −13.92 −15.99 to −11.85 —

nICPFVsv

FVsv 0.38 0.29 to 0.47 <0.001 0.34 0.29 to 0.40 <0.001

Intercept 0.0005 −2.87 to 2.83 — 1.16 −0.82 to 3.13 —

nICPONSD+FVsv

ONSD 4.23 3.63 to 4.79 <0.001 4.54 4.14 to 4.95 <0.001

FVsv 0.14 0.07 to 0.22 <0.001 0.10 0.06 to 0.15 <0.001

Intercept −14.51 −16.82 to −12.19 — −14.79 −16.83 to −12.75 —

Full model accounts for random intercepts and slopes; null model accounts for random intercepts only.

FVsv, straight sinus systolic flow velocity; nICPONSD, non-invasive intracranial pressure estimator based on optic nerve sheath diameter; nICPFVsv, non-

invasive intracranial pressure estimator based on straight sinus systolic flow velocity; nICPONSD+FVsv, non-invasive intracranial pressure estimator based

on a combination of ONSD and FVsv; ONSD, optic nerve sheath diameter.

https://doi.org/10.1371/journal.pmed.1002356.t003
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the 2 methods presented a correlation coefficient of 0.81 (Table 4; Fig 1). S1 Fig displays the

regression plots between ICP and the non-invasive estimators (ONSD and FVsv) for each

patient, demonstrating the slope variability between patients with multiple measurement

points.

Table 5 summarises the 95% prediction and confidence intervals for the linear regressions

between ICP and all non-invasive estimators. The 95% prediction interval for ONSD ranged

from 5.05 ± 4.04 to 19.32 ± 4.17 mm Hg; the 95% confidence interval ranged from 11.03 ± 3.95

to 13.34 ± 4.30 mm Hg. The 95% prediction interval for FVsv ranged from 4.57 ± 3.83 to

19.79 ± 3.96 mm Hg; the 95% confidence interval ranged from 10.94 ± 3.71 to 13.43 ± 4.12

mm Hg. For the combination of the 2 methods (nICPONSD+FVsv), the 95% prediction interval

ranged from 5.65 ± 4.30 to 18.72 ± 4.45 mm Hg; the 95% confidence interval ranged from

10.90 ± 4.19 to 13.47 ± 4.60 mm Hg.

Results of ROC analysis are showed in Table 6 and Fig 2. ONSD had the best AUC among

all methods for discriminating cases with intracranial hypertension (ICP� 20 mm Hg) from

cases without it (AUC = 0.91, 95% CI 0.88–0.95). The best ONSD and FVsv cutoff values for

prediction of intracranial hypertension were 5.85 mm and 38.50 cm/s, respectively. The

method based on the combination of ONSD and FVsv showed a statistically significant

improvement of AUC values compared with the ONSD method alone (0.93, 95% CI 0.90–

0.97, p = 0.01 [DeLong’s test]).

Mortality and nICP

The outcome assessed at discharge revealed that 13 patients died (20%) and 51 survived. Mean

ICP showed a tendency to be greater in patients who died; mean ONSD was greater in patients

who died than in those who survived (Table 7; Fig 3). FVsv was not significantly different

between survivors and non-survivors (p = 0.28).

Discussion

In this study, we present and compare new models for ultrasound-based non-invasive estima-

tion of ICP, based on ONSD ultrasonography, aTCD, and vTCD. Our results show that nICP

derived from ONSD has the strongest correlation with invasive ICP. Moreover, ONSD mea-

sured through ultrasound was correlated with mortality at discharge. Finally, we demonstrated

that a method based on the combination of the 2 best correlated parameters in our cohort

(ONSD and FVsv—nICPONSD+FVsv) performed even better across all measurement points

(R = 0.78; AUC for prediction of ICP� 20 mm Hg was 0.93).

Measuring ONSD and FVsv using a duplex Doppler machine is fast and does not require

probe fixation or specific dedicated hardware [13]. Furthermore, ultrasonography devices are

Table 4. Correlations between ICP and non-invasive estimators across all measurement points

(N = 445) and for average values between patients (N = 64).

Estimator R for measurement points (N = 445) R for patients (N = 64)

ONSD 0.76 0.76

FVsv 0.54 0.72

nICPONSD+FVsv 0.78 0.81

FVsv, straight sinus systolic flow velocity; nICPONSD+FVsv, non-invasive intracranial pressure estimator

based on the combination of ONSD and FVsv; ONSD, optic nerve sheath diameter; R, Pearson correlation

coefficient.

https://doi.org/10.1371/journal.pmed.1002356.t004
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available in most emergency departments and intensive care units, and are used for many

other purposes. Therefore, ultrasonography could be very useful for nICP assessment.

Fig 1. Scatterplot of ICP (mm Hg) and different nICP estimators between patients (N = 64). (A) ONSD method (R = 0.76); (B) FVsv (R = 0.72); (C) nICP

estimator based on the combination of ONSD and FVsv (nICPONSD+FVsv, R = 0.80). Dark grey shaded areas on the plots represent 95% confidence

intervals for the linear regressions; light grey shaded areas on the plots represent the 95% prediction intervals for the linear regressions. ICP, intracranial

pressure; nICP, non-invasive intracranial pressure; ONSD, optic nerve sheath diameter.

https://doi.org/10.1371/journal.pmed.1002356.g001
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The optic nerve is surrounded by subarachnoid space [10,11,31]; hence, the intraorbital

part of the subarachnoid space is distensible and can therefore expand if the CSF pressure

increases, with the maximum ONSD fluctuations occurring in the anterior compartment.

Although the diameter of the optic nerve is narrower in the anterior than in the posterior seg-

ment, increased ICP in the perioptic CSF causes a greater enlargement of the retrobulbar seg-

ment of the optic nerve sheath, 3 mm behind the globe, than of the posterior segment [32].

This is probably related to the asymmetrical distribution of the arachnoidal trabeculae and the

lower density of the arachnoidal trabeculae in the retrobulbar space. ONSD has been investi-

gated in different clinical scenarios [10,33–35], showing a good correlation with ICP measured

invasively and low inter- and intra-observer variability [10,11,27,36]. Our results agree with

these findings. Among the studied methods, ONSD was the most accurate in the assessment of

ICP; moreover, it is a safe and quick method, as the orbital window is easily available and has

no complications.

vTCD for the assessment of ICP is a poorly developed technique. It is known that increasing

ICP leads to venous haemodynamic changes, as the part of the cerebral vasculature most sensi-

tive to elevated ICP is the subarachnoid bridging veins. According to the Monro–Kellie doc-

trine, cerebral compliance strongly depends on the compressibility of the low-pressure venous

compartment, and stasis in the pial veins occurs early as a compensatory mechanism in case of

increased ICP [37,38]. Consequently, venous blood may be pooled toward larger venous ves-

sels (straight sinus and Rosenthal vein), causing an increase in venous flow velocity. An alter-

native explanation may be that straight sinus can be compressed by rising ICP, and, with

constant volume flow, flow velocity may increase.

Schoser et al. applied vTCD for the estimation of ICP in 30 control volunteers and 25

patients with elevated ICP and found a linear relationship, with strong correlation between

mean ICP and FVsv [25]. Similarly to Schoser et al., we found that FVsv is strongly correlated

with ICP, whereas other vTCD parameters (venous pulsatility index and FVdv) were not good

estimators of ICP.

Table 5. Summary of the 95% prediction and confidence intervals (± standard deviations) for the linear regression between intracranial pressure

and non-invasive estimators between patients (N = 64).

Estimator 95% prediction interval 95% confidence interval

Lower bound Upper bound Lower bound Upper bound

ONSD 5.05 ± 4.04 19.32 ± 4.17 11.03 ± 3.95 13.34 ± 4.30

FVsv 4.57 ± 3.83 19.79 ± 3.96 10.94 ± 3.71 13.43 ± 4.12

nICPONSD+FVsv 5.65 ± 4.30 18.72 ± 4.45 10.90 ± 4.19 13.47 ± 4.60

FVsv, straight sinus systolic flow velocity; nICPONSD+FVsv, non-invasive intracranial pressure estimator based on the combination of ONSD and FVsv;

ONSD, optic nerve sheath diameter.

https://doi.org/10.1371/journal.pmed.1002356.t005

Table 6. Results of receiver operating characteristic analysis for ICP� 20 mm Hg considering all mea-

surement points (N = 445).

Estimator AUC (95% CI)

ONSD 0.91 (0.88–0.95)

FVsv 0.81 (0.74–0.87)

nICPONSD+FVsv 0.93 (0.90–0.97)

AUC, area under the curve; FVsv, straight sinus systolic flow velocity; nICPONSD+FVsv, non-invasive

intracranial pressure estimator based on the combination of ONSD and FVsv; ONSD, optic nerve sheath

diameter.

https://doi.org/10.1371/journal.pmed.1002356.t006
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Although the measurement of FVsv seems promising, this technique has some limitations:

it can be impossible in polytraumatic patients because of the presence of a cervical collar (6

cases in our cohort). Moreover, the insonation of the straight sinus is feasible in just 72% of

Fig 2. Receiver operating characteristic analysis for different nICP predictors for a threshold of ICP� 20 mm Hg. (A) ONSD method; (B)

FVsv; (C) nICP estimator based on the combination of ONSD and FVsv (nICPONSD+FVsv). The values shown on the curve in (A) and (B) represent

the best thresholds (cutoff values presenting the best sensitivity and specificity [in parentheses]) for prediction of intracranial hypertension (ICP� 20

mm Hg), respectively, for ONSD and FVsv. AUC is presented followed by the 95% confidence interval. AUC, area under the curve; FVsv, straight

sinus systolic flow velocity; ICP, intracranial pressure; nICP, non-invasive intracranial pressure; ONSD, optic nerve sheath diameter.

https://doi.org/10.1371/journal.pmed.1002356.g002

Table 7. Summary table describing the association between ICP, ONSD, and mortality.

Measure Survived (mean ± SD) Dead (mean ± SD) Difference

Mean p-Value

ICP 11.60 ± 4.65 14.45 ± 7.43 −2.85 0.088

ONSD 5.11 ± 0.66 5.71 ± 1.37 −0.61 0.023

ICP, intracranial pressure; ONSD, optic nerve sheath diameter.

https://doi.org/10.1371/journal.pmed.1002356.t007
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cases because of anatomical variations in cerebral veins and transcranial insonation difficulties

[25] (even though we had just 3 unsuccessful cases in our cohort, 3.7%).

Our method has several potential clinical applications: it could be useful when invasive

monitoring is contraindicated or unavailable, or in many “borderline” situations in which the

insertion of invasive monitoring is questioned but a nICP measurement could be useful

[20,21]. It can also be applied in patients at risk of intracranial hypertension for causes that are

not primarily neurosurgical (such as liver transplantation and intraoperative settings at risk of

intracranial hypertension [23,24]) or as screening tool in the emergency department in

patients where there is doubt about the need for invasive ICP monitoring.

Limitations

There are several limitations that deserve to be mentioned. First, transcranial Doppler (and

ONSD) measurements were intermittent, and continuous measurements remain more feasible

with invasive techniques. Second, the mixed cohort of enrolled patients, including different

types of acute brain injury, may represent a bias, as the ICP and cerebral perfusion pressure

thresholds for subarachnoid haemorrhage, intracerebral haemorrhage, and stroke are not as

well defined as for traumatic brain injury. However, this heterogeneity increases the applicabil-

ity of the study in many clinical scenarios. Other major limitations are the small number of

patients included in this study, the need for specialised training to perform and interpret the

ultrasound tests, and the variability in performance among different ultrasound operators.

Finally, most our measurements were obtained in patients with relatively well-controlled

ICP. Although a strong correlation between nICP and invasive ICP within the range investi-

gated supports the assumption of validity beyond the range investigated, larger validation stud-

ies will need to be performed before non-invasive techniques will be able to substitute for

invasive ICP monitoring. In addition, despite our findings showing that mortality has a stron-

ger association with ONSD than with ICP, this does not imply that it would be clinically better

to monitor and manage ONSD than ICP.

Fig 3. Boxplots of the analysis of variance of ICP and ONSD between patients who survived and those who died. (A) ICP; (B) ONSD. The mean

ONSD between patients who survived and died was significantly different. ICP, intracranial pressure; ONSD, optic nerve sheath diameter.

https://doi.org/10.1371/journal.pmed.1002356.g003
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Conclusion

A novel nICP monitoring method based on combined ONSD ultrasonography and vTCD was

shown to have promising value for the diagnosis of intracranial hypertension, and a strong

correlation with invasive ICP monitoring. This ultrasound-based method is quick, low-cost,

and based on technology widely available in emergency departments and intensive care units.

Whilst we still advocate the superiority of invasive ICP monitoring when this is clearly indi-

cated, the non-invasive methodology presented here may be of potential benefit for ICP assess-

ment in several clinical scenarios where invasive measurement is not immediately available or

is contraindicated. However, this method has several limitations, and further studies are

needed to confirm and validate our findings.
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