6 research outputs found

    Nanoferroelectric perovskite oxides with unusual morphology produced by different synthesis procedures

    Get PDF
    We report in the present paper some original results of a joint research performed in the framework of the COST Action 539 ELENA. In search of higher miniaturisation of electroceramic devices a new outlook seems to arise from ceramics with unusual morphology that might present a new kind of circular or toroidal ferroelectric ordering of dipoles. Completely new perspectives in data storage can be expected if a close control of size confinement and dimensionality as well as of the chemical composition and the phase purity is reached. We succeeded in the fabrication of BaTiO3 hollow nanoparticles and nanowires, and Bi4Ti3O12 platelets. The use of soft chemistry and solid state methods allowed to produce coreshell powders and ferroelectric-ferromagnetic composites with completely new functional properties

    Piezoelectric characterization of lead-free ferroelectric ceramics

    Get PDF
    The challenge to develop high piezoelectric sensitivity and lead-free composition ferro-piezoelectric ceramics has recently dragged new attention to some classic ferroelectrics. Here, Ba(CexTi1-x)O3 (Ce-BT) and 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 (BNBT6) ceramics were piezoelectrically characterized from measurements of complex impedance at electromechanical resonances and their analysis by Alemany et al. software. The reconstruction of the spectra for each resonance is used as an accuracy test of the set of calculated coefficients, quantitatively characterized by the regression factor (R2) of such reconstruction to the experimental spectrum. Piezoelectric activity at room temperature (RT) was observed for Ce-BT with x=0.06 and 0.1, ferroelectrics with T(ε´max)>RT, but also for x=0.2 with T(ε´max)1100°C. Some measurement issues, as the role of the mode coupling on the characterization results, illustrated for the shear mode of a thickness poled plate, are discussedELENA COST539 Action (ESF); NoE-MIND CE FP6 515757-2.Peer reviewe

    Optimization of Processing Steps for Superior Functional Properties of (Ba, Ca)(Zr, Ti)O<sub>3</sub> Ceramics

    No full text
    Lead-free piezoelectric ceramics with nominal composition at morphotropic phase boundary Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) prepared by different processing routes and sintered either by conventional solid-state reaction or by spark plasma sintering (SPS) techniques were comparatively investigated to observe the role of structural modifications and of microstructures on the dielectric, ferroelectric, piezoelectric and electrocaloric responses. The ceramics presented relative densities from 75% to 97% and showed variations in their phase composition as a result of variable mixing and different synthesis and sintering parameters providing local compositional heterogeneity. As result, all of the ceramics showed diffuse phase transition and ferroelectric switching responses, with parameters affected mostly by density (Pr between 3.6 to 10.1 μC/cm2). High values for the electrocaloric response in the Curie range were found for the ceramics with predominantly orthorhombic character. Field-induced structural modifications were probed by tunability anomalies and by XRD experiments in remanence conditions. Piezoelectric effects with notably high figure of merit values were assigned to the better densification and poling efficiency of BCTZ ceramics
    corecore