851 research outputs found

    Cutting tool temperatures in contour turning : transient analysis and experimental verification

    Get PDF
    This paper describes a model for predicting cutting tool temperatures under transient conditions. It is applicable to processes such as contour turning, in which the cutting speed, feed rate, and depth of cut may vary continuously with time. The model is intended for use in process development and trouble shooting. Therefore, emphasis is given in the model development to enable rapid computation and to avoid the need to specify parameters such as thermal contact resistances and convection coefficients which are not known in practice. Experiments were conducted to validate the predictive model. The model predictions with two different boundary conditions bound the experimental results. An example is presented which shows the utility of the model for process planning

    Infrared Observations of the Candidate LBV 1806-20 & Nearby Cluster Stars

    Full text link
    We report near-infrared photometry, spectroscopy, and speckle imaging of the hot, luminous star we identify as candidate LBV 1806-20. We also present photometry and spectroscopy of 3 nearby stars, which are members of the same star cluster containing LBV 1806-20 and SGR 1806-20. The spectroscopy and photometry show that LBV 1806-20 is similar in many respects to the luminous ``Pistol Star'', albeit with some important differences. They also provide estimates of the effective temperature and reddening of LBV 1806-20, and confirm distance estimates, leading to a best estimate for the luminosity of this star of >5×106L> 5 \times 10^6 L_{\odot}. The nearby cluster stars have spectral types and inferred absolute magnitudes which confirm the distance (and thus luminosity) estimate for LBV 1806-20. If we drop kinematic measurements of the distance (15.11.3+1.815.1 ^{+1.8}_{-1.3} kpc), we have a lower limit on the distance of >9.5>9.5 kpc, and on the luminosity of >2×106L>2 \times 10^6 L_{\odot}, based on the cluster stars. If we drop both the kinematic and cluster star indicators for distance, an ammonia absorption feature sets yet another lower limit to the distance of >5.7>5.7 kpc, with a corresponding luminosity estimate of >7×105L>7 \times 10^5 L_{\odot} for the candidate LBV 1806-20. Furthermore, based on very high angular-resolution speckle images, we determine that LBV 1806-20 is not a cluster of stars, but is rather a single star or binary system. Simple arguments based on the Eddington luminosity lead to an estimate of the total mass of LBV 1806-20 (single or binary) exceeding 190M190 M_{\odot}. We discuss the possible uncertainties in these results, and their implications for the star formation history of this cluster.Comment: 36 pages, including 8 figures (Figures 1 and 7 in JPG format due to space); Accepted for publication in Ap

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground

    Plasma flows during the ablation stage of an over-massed pulsed-power-driven exploding planar wire array

    Full text link
    We characterize the plasma flows generated during the ablation stage of an over-massed exploding planar wire array, fielded on the COBRA pulsed-power facility (1 MA peak current, 250 ns rise time). The planar wire array is designed to provide a driving magnetic field (80-100 T) and current per wire distribution (about 60 kA), similar to that in a 10 MA cylindrical exploding wire array fielded on the Z machine. Over-massing the arrays enables continuous plasma ablation over the duration of the experiment. The requirement to over-mass on the Z machine necessitates wires with diameters of 75-100 μ\mum, which are thicker than wires usually fielded on wire array experiments. To test ablation with thicker wires, we perform a parametric study by varying the initial wire diameter between 33-100 μ\mum. The largest wire diameter (100 μ\mum) array exhibits early closure of the AK gap, while the gap remains open during the duration of the experiment for wire diameters between 33-75 μ\mum. Laser plasma interferometry and time-gated XUV imaging are used to probe the plasma flows ablating from the wires. The plasma flows from the wires converge to generate a pinch, which appears as a fast-moving (V100V \approx {100} kms1^{-1}) column of increased plasma density (nˉe2×1018\bar{n}_e \approx 2 \times 10^{18} cm3^{-3}) and strong XUV emission. Finally, we compare the results with three-dimensional resistive-magnetohydrodynamic (MHD) simulations performed using the code GORGON, the results of which reproduce the dynamics of the experiment reasonably well.Comment: 14 pages; 14 figure

    HL-1 cells express an inwardly rectifying K+ current activated via muscarinic receptors comparable to that in mouse atrial myocytes

    Get PDF
    An inwardly rectifying K^+ current is present in atrial cardiac myocytes that is activated by acetylcholine (I_{KACh}). Physiologically, activation of the current in the SA node is important in slowing the heart rate with increased parasympathetic tone. It is a paradigm for the direct regulation of signaling effectors by the Gβγ G-protein subunit. Many questions have been addressed in heterologous expression systems with less focus on the behaviour in native myocytes partly because of the technical difficulties in undertaking comparable studies in native cells. In this study, we characterise a potassium current in the atrial-derived cell line HL-1. Using an electrophysiological approach, we compare the characteristics of the potassium current with those in native atrial cells and in a HEK cell line expressing the cloned Kir3.1/3.4 channel. The potassium current recorded in HL-1 is inwardly rectifying and activated by the muscarinic agonist carbachol. Carbachol-activated currents were inhibited by pertussis toxin and tertiapin-Q. The basal current was time-dependently increased when GTP was substituted in the patch-clamp pipette by the non-hydrolysable analogue GTPγS. We compared the kinetics of current modulation in HL-1 with those of freshly isolated atrial mouse cardiomyocytes. The current activation and deactivation kinetics in HL-1 cells are comparable to those measured in atrial cardiomyocytes. Using immunofluorescence, we found GIRK4 at the membrane in HL-1 cells. Real-time RT-PCR confirms the presence of mRNA for the main G-protein subunits, as well as for M2 muscarinic and A1 adenosine receptors. The data suggest HL-1 cells are a good model to study IKAch

    Low and High Birth Weights Are Risk Factors for Nonalcoholic Fatty Liver Disease in Children

    Get PDF
    OBJECTIVES: To examine the distribution of birth weight in children with nonalcoholic fatty liver disease (NAFLD) compared with the general US population, and to investigate the relationship between birth weight and severity of NAFLD. STUDY DESIGN: A multicenter, cross-sectional study of children with biopsy-proven NAFLD enrolled in the Nonalcoholic Steatohepatitis Clinical Research Network Database. Birth weight was categorized as low birth weight (LBW), normal birth weight (NBW), or high birth weight (HBW) and compared with the birth weight distribution in the general US population. The severity of liver histology was assessed by birth weight category. RESULTS: Children with NAFLD (n = 538) had overrepresentation of both LBW and HBW compared with the general US population (LBW, 9.3%; NBW, 75.8%; HBW, 14.9% vs LBW, 6.1%; NBW, 83.5%; HBW 10.5%; P < .0001). Children with HBW had significantly greater odds of having more severe steatosis (OR, 1.82, 95% CI. 1.15-2.88) and nonalcoholic steatohepatitis (OR, 2.03; 95% CI, 1.21-3.40) compared with children with NBW. In addition, children with NAFLD and LBW had significantly greater odds of having advanced fibrosis (OR, 2.23; 95% CI, 1.08-4.62). CONCLUSION: Birth weight involves maternal and in utero factors that may have long-lasting consequences. Children with both LBW and HBW may be at increased risk for developing NAFLD. Among children with NAFLD, those with LBW or HBW appear to be at increased risk for more severe disease

    Immune Boosting Explains Regime-Shifts in Prevaccine-Era Pertussis Dynamics

    Get PDF
    Understanding the biological mechanisms underlying episodic outbreaks of infectious diseases is one of mathematical epidemiology’s major goals. Historic records are an invaluable source of information in this enterprise. Pertussis (whooping cough) is a re-emerging infection whose intermittent bouts of large multiannual epidemics interspersed between periods of smaller-amplitude cycles remain an enigma. It has been suggested that recent increases in pertussis incidence and shifts in the age-distribution of cases may be due to diminished natural immune boosting. Here we show that a model that incorporates this mechanism can account for a unique set of pre-vaccine-era data from Copenhagen. Under this model, immune boosting induces transient bursts of large amplitude outbreaks. In the face of mass vaccination, the boosting model predicts larger and more frequent outbreaks than do models with permanent or passively-waning immunity. Our results emphasize the importance of understanding the mechanisms responsible for maintaining immune memory fo
    corecore