80 research outputs found

    Prospectus, April 12, 2000

    Get PDF
    https://spark.parkland.edu/prospectus_2000/1012/thumbnail.jp

    The Ixodes ricinus salivary gland proteome during feeding and B. Afzelii infection: New avenues for an anti-tick vaccine

    Get PDF
    Introduction Borrelia burgdorferi sensu lato, the causative agents of Lyme borreliosis, are transmitted by Ixodes ticks. Tick saliva proteins are instrumental for survival of both the vector and spirochete and have been investigated as targets for vaccine targeting the vector. In Europe, the main vector for Lyme borreliosis is Ixodes ricinus, which predominantly transmits Borrelia afzelii. We here investigated the differential production of I. ricinus tick saliva proteins in response to feeding and B. afzelii infection. Method Label-free Quantitative Proteomics and Progenesis QI software was used to identify, compare, and select tick salivary gland proteins differentially produced during tick feeding and in response to B. afzelii infection. Tick saliva proteins were selected for validation, recombinantly expressed and used in both mouse and guinea pig vaccination and tick-challenge studies. Results We identified 870 I. ricinus proteins from which 68 were overrepresented upon 24-hours of feeding and B. afzelii infection. Selected tick proteins were successfully validated by confirming their expression at the RNA and native protein level in independent tick pools. When used in a recombinant vaccine formulation, these tick proteins significantly reduced the post-engorgement weights of I. ricinus nymphs in two experimental animal models. Despite the reduced ability of ticks to feed on vaccinated animals, we observed efficient transmission of B. afzelii to the murine host. Conclusion Using quantitative proteomics, we identified differential protein production in I. ricinus salivary glands in response to B. afzelii infection and different feeding conditions. These results provide novel insights into the process of I. ricinus feeding and B. afzelii transmission and revealed novel candidates for an anti-tick vaccine

    Enhanced VWF clearance in low VWF pathogenesis: Limitations of the VWFpp/VWF:Ag ratio and clinical significance

    Get PDF
    Increased von Willebrand factor (VWF) clearance plays a key role in the pathogenesis of type 1 and type 2 von Willebrand disease (VWD). However, the pathological mechanisms involved in patients with mild to moderate reductions in plasma VWF:Ag (range, 30-50 IU/dL; low VWF) remain poorly understood. In this study, we investigated the hypothesis that enhanced VWF clearance may contribute to the pathobiology of low VWF. Patients with low VWF were recruited to the LoVIC study after ethics approval and receipt of informed consent. Desmopressin was administered IV in 75 patients, and blood samples were drawn at baseline and at the 1-hour and 4-hour time points. As defined by recent ASH/ISTH/NHF/WFH guidelines, 20% of our low-VWF cohort demonstrated significantly enhanced VWF clearance. Importantly, from a clinical perspective, this enhanced VWF clearance was seen after desmopressin infusion, but did not affect the steady-state VWF propeptide (VWFpp)-to-VWF antigen (VWF:Ag) ratio (VWFpp/VWF:Ag) in most cases. The discrepancy between the VWFpp/VWF:Ag ratio and desmopressin fall-off rates in patients with mild quantitative VWD may have reflected alteration in VWFpp clearance kinetics. Finally, bleeding scores were significantly lower in patients with low VWF with enhanced VWF clearance, compared with those in whom reduced VWF biosynthesis represented the principle pathogenic mechanism. This trial was registered at http://www.clinicaltrials.gov as #NCT03167320

    Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia

    Get PDF
    Previous phylogenetic studies have indicated that Acacia Miller s.l. is polyphyletic and in need of reclassification. A proposal to conserve the name Acacia for the larger Australian contingent of the genus (formerly subgenus Phyllodineae) resulted in the retypification of the genus with the Australian A. penninervis. However, Acacia s.l. comprises at least four additional distinct clades or genera, some still requiring formal taxonomic transfer of species. These include Vachellia (formerly subgenus Acacia), Senegalia (formerly subgenus Aculeiferum), Acaciella (formerly subgenus Aculeiferum section Filicinae) and Mariosousa (formerly the A. coulteri group). In light of this fragmentation of Acacia s.l., there is a need to assess relationships of the non-Australian taxa. A molecular phylogenetic study of Acacia s.l and close relatives occurring in Africa was conducted using sequence data from matK/trnK, trnL-trnF and psbA-trnH with the aim of determining the placement of the African species in the new generic system. The results reinforce the inevitability of recognizing segregate genera for Acacia s.l. and new combinations for the African species in Senegalia and Vachellia are formalized.Web of Scienc

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Perioperative management of patients with von Willebrand disease

    No full text
    Surgical procedures represent a serious hemostatic challenge for patients with von Willebrand disease (VWD), and careful perioperative management is required to minimize bleeding risk. Risk stratification includes not only the nature of the surgery to be performed but the baseline plasma vonWillebrand factor (VWF) levels, bleeding history, and responses to previous challenges. Baseline bleeding scores (BSs) may assist in identification of patients with a higher risk of postsurgical bleeding. There remains a lack of consensus between best practice guidelines as to the therapeutic target and assays to be monitored in the postoperative period. Hemostatic levels are maintained until bleeding risk abates: usually 3 to 5 days forminor procedures and 7 to 14 days formajor surgery. Hemostatic supplementation ismore complex in VWD than in other bleeding disorders owing to the combined but variable deficiency of both plasma VWF and factor VIII (FVIII) levels. For emergency surgery, coadministration of VWF and FVIII is required to ensure hemostasis; however, for elective procedures, early infusion of VWF replacement therapy will stabilize endogenous FVIII. Because endogenous FVIII production is unaffected in patients with VWD, repeated VWF supplementation (particularly with plasma-derived FVIII-containing products) may lead to accumulation of FVIII. Frequent monitoring of plasma levels and access to hemostatic testing are, therefore, essential for patients undergoing major surgery, particularly with more severe forms of VWD
    corecore