24 research outputs found

    Fax +41 61 306 12 34 E-Mail [email protected]

    Get PDF
    The sex of an individual is determined by the fate of the gonad. This organ arises from two different structures: the coelomic epithelium and a mesenchymal part that forms from the mesonephros. The early embryonic gonad can differentiate into a testis or an ovary, thus suggesting that at an early stage the gonad is bipotential. Testis formation requires differentiation of Sertoli cells, which will form the supporting cell lineage of the seminiferous tubules. These cells synthesize Anti-Mullerian Hormone (AMH), which induces regression of the Mullerian duct, thus counteracting the development of female internal genitalia. Moreover, Sertoli cells favor recruitment of other somatic cell lineages migrating from the mesonephros that are also crucial for testis development to occur. The interstitial area of the testis contains the steroidogenic cells (Leydig cells), which have the function of producing androgens. These hormones stimulate the differentiation of internal and external genitalia of the male [for a review see Gonad differentiation depends on the paternal transmission of the sex chromosome. Thus, an XY embryo develops as a male, whereas an XX embryo becomes female. Most of the genes involved in this developmental pathway have been discovered from genetic studies of human XY sex-reversal. At a molecular level, the Y chromosome encodes a testis determining factor, SRY [Sinclair et al., Key Words Abstract In mammals, the sex of the embryo is determined during development by its commitment either to the male or female genetic program regulating testicular or ovarian organogenesis. Major steps towards unraveling sex determination in mammals are achieved by the identification of key genes involved in human pathologies and the application of mouse genetics to analyze their function. While the expression of Sry and Sox9 is sufficient to induce the male developmental program, the molecular pathways that specify ovarian differentiation were unclear before the recent demonstration that mutations in the RSPO1 gene induce femaleto-male sex reversal in XX patients. By generating the corresponding mouse model, we have shown that Rspo1 is so far the earliest known gene controlling the female genetic developmental program. Rspo1 activates the canonical ␤ -catenin signaling pathway required for female somatic cell differentiation and germ cell commitment into meiosis. The aim of this review is to describe the roles of R-spondins (Rspo) in developmental processes and disorders and the current knowledge obtained from murine models. A particular focus will be on Rspo1 and its crucial function in sex determination

    Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease

    Get PDF
    Mucopolysaccharidosis type II (MPS II) is a rare, life-limiting, X-linked recessive disease characterised by deficiency of the lysosomal enzyme iduronate-2-sulfatase. Consequent accumulation of glycosaminoglycans leads to pathological changes in multiple body systems. Age at onset, signs and symptoms, and disease progression are heterogeneous, and patients may present with many different manifestations to a wide range of specialists. Expertise in diagnosing and managing MPS II varies widely between countries, and substantial delays between disease onset and diagnosis can occur. In recent years, disease-specific treatments such as enzyme replacement therapy and stem cell transplantation have helped to address the underlying enzyme deficiency in patients with MPS II. However, the multisystem nature of this disorder and the irreversibility of some manifestations mean that most patients require substantial medical support from many different specialists, even if they are receiving treatment. This article presents an overview of how to recognise, diagnose, and care for patients with MPS II. Particular focus is given to the multidisciplinary nature of patient management, which requires input from paediatricians, specialist nurses, otorhinolaryngologists, orthopaedic surgeons, ophthalmologists, cardiologists, pneumologists, anaesthesiologists, neurologists, physiotherapists, occupational therapists, speech therapists, psychologists, social workers, homecare companies and patient societies. Take-home message. Expertise in recognising and treating patients with MPS II varies widely between countries. This article presents pan-European recommendations for the diagnosis and management of this life-limiting disease

    Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Fabry disease (FD) is a lysosomal storage disorder resulting in progressive nervous system, kidney and heart disease. Enzyme replacement therapy (ERT) may halt or attenuate disease progression. Since administration is burdensome and expensive, appropriate use is mandatory. We aimed to define European consensus recommendations for the initiation and cessation of ERT in patients with FD.A Delphi procedure was conducted with an online survey (n = 28) and a meeting (n = 15). Patient organization representatives were present at the meeting to give their views. Recommendations were accepted with ≥75% agreement and no disagreement.For classically affected males, consensus was achieved that ERT is recommended as soon as there are early clinical signs of kidney, heart or brain involvement, but may be considered in patients of ≥16 years in the absence of clinical signs or symptoms of organ involvement. Classically affected females and males with non-classical FD should be treated as soon as there are early clinical signs of kidney, heart or brain involvement, while treatment may be considered in females with non-classical FD with early clinical signs that are considered to be due to FD. Consensus was achieved that treatment should not be withheld from patients with severe renal insufficiency (GFR < 45 ml/min/1.73 m(2)) and from those on dialysis or with cognitive decline, but carefully considered on an individual basis. Stopping ERT may be considered in patients with end stage FD or other co-morbidities, leading to a life expectancy of <1 year. In those with cognitive decline of any cause, or lack of response for 1 year when the sole indication for ERT is neuropathic pain, stopping ERT may be considered. Also, in patients with end stage renal disease, without an option for renal transplantation, in combination with advanced heart failure (NYHA class IV), cessation of ERT should be considered. ERT in patients who are non-compliant or fail to attend regularly at visits should be stopped.The recommendations can be used as a benchmark for initiation and cessation of ERT, although final decisions should be made on an individual basis. Future collaborative efforts are needed for optimization of these recommendations.Ministry of Health (ZonMw

    Mutations involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive anomalies.

    Get PDF
    © The Author(s) 2018. Published by Oxford University Press. All rights reserved. SOX8 is an HMG-box transcription factor closely related to SRY and SOX9. Deletion of the gene encoding Sox8 in mice causes reproductive dysfunction but the role of SOX8 in humans is unknown. Here, we show that SOX8 is expressed in the somatic cells of the early developing gonad in the human and influences human sex determination. We identified two individuals with 46, XY disorders/differences in sex development (DSD) and chromosomal rearrangements encompassing the SOX8 locus and a third individual with 46, XY DSD and a missense mutation in the HMG-box of SOX8. In vitro functional assays indicate that this mutation alters the biological activity of the protein. As an emerging body of evidence suggests that DSDs and infertility can have common etiologies, we also analysed SOX8 in a cohort of infertile men (n=274) and two independent cohorts of women with primary ovarian insufficiency (POI; n=153 and n=104). SOX8 mutations were found at increased frequency in oligozoospermic men (3.5%; P < 0.05) and POI (5.06%; P=4.5×10 -5 ) as compared with fertile/normospermic control populations (0.74%). The mutant proteins identified altered SOX8 biological activity as compared with the wild-type protein. These data demonstrate that SOX8 plays an important role in human reproduction and SOX8 mutations contribute to a spectrum of phenotypes including 46, XY DSD, male infertility and 46, XX POI.Link_to_subscribed_fulltex

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Mortality in patients with Sanfilippo syndrome

    No full text
    Abstract Background Sanfilippo syndrome (mucopolysaccharidosis type III; MPS III) is an inherited monogenic lysosomal storage disorder divided into subtypes A, B, C and D. Each subtype is characterized by deficiency of a different enzyme participating in metabolism of heparan sulphate. The resultant accumulation of this substrate in bodily tissues causes various malfunctions of organs, ultimately leading to premature death. Eighty-four, 24 and 5 death certificates of patients with Sanfilippo syndrome types A, B and C, respectively, were obtained from the Society of Mucopolysaccharide Diseases (UK) to better understand the natural course of these conditions, covering the years 1977–2007. Results In Sanfilippo syndrome type A mean age at death (± standard deviation) was 15.22 ± 4.22 years, 18.91 ± 7.33 years for patients with Sanfilippo syndrome type B and 23.43 ± 9.47 years in Sanfilippo syndrome type C. Patients with Sanfilippo syndrome type A showed significant increase in longevity over the period of observation (p = 0.012). Survival rates of patients with Sanfilippo syndrome type B did not show a statistically significant improvement (p = 0.134). In Sanfilippo syndrome types A and B, pneumonia was identified as the leading cause of death. Conclusions The analysis of 113 death certificates of patients with Sanfilippo syndrome in the UK has demonstrated that the longevity has improved significantly in patients with Sanfilippo syndrome type A over a last few decades. The numbers of patients with Sanfilippo syndrome types B and C were too small to identify any significant trend changes for these groups. Respiratory tract infections, notably pneumonia, remain the leading cause of mortality in Sanfilippo syndrome types A and B. The extended lifespans of patients with Sanfilippo syndrome type A were achieved despite the lack of therapies to target the primary insult or pathophysiology of the disease. However, the mean age at death of these patients remains low when compared with the general population. Therefore, there is an urgent need for effective disease-specific therapies to be developed so that the quality of life and survival of patients with Sanfilippo syndrome can be improved
    corecore