160 research outputs found

    Вплив різних видів анестезіологічного забезпечення на неспецифічну ланку імунітету вагітних під час кесарева розтину

    Get PDF
    Компоненты хирургической операции – операционная травма, стресс, общая анестезия, кровопотеря, антибактериальная – терапия приводят к снижению защиты иммунной системы и развитию вторичной иммунной недостаточности. В результате операционно-анестезиологического стресса в организме больного возникает состояние иммунодепрессии, которое необходимо нивелировать путем выбора анестетиков, минимально угнетающих иммунные реакции. Такой подход дает возможность разработать и внедрить в клиническую практику оптимальные методы анестезии у беременных. Проведенное исследование показало, что операционный стресс негативно влияет на неспецифический иммунитет беременных. В зависимости от вида анестезии проявления негативного влияния будет различным. Установлено, что спинальная анестезия сопровождается минимальным влиянием на фагоцитарную активность лейкоцитов, а общая анестезия имеет депрессивное влияние, которое сопровождается более пяти дней.Components surgery . surgical trauma, stress, general anesthesia, blood loss, antibiotic . therapy leads to a decrease in defense of the immune system and the development of secondary immune deficiency. As a result of operational and anesthetic stress in the patient.s body a state of immunosuppression, which is necessary to level by selecting the anesthetic minimally depressing the immune response. This approach provides an opportunity to develop and introduce into clinical practice the best methods of anesthesia in pregnant women. The study showed that operational stress affects the nonspecific immunity of pregnant women. Depending on the type of anesthesia, manifestations of the negative impact will be different. Established that spinal anesthesia with a minimum influence on the phagocytic activity of leukocytes and general anesthesia has a depressive effect which is accompanied by more than five days

    Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements

    Get PDF
    AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings

    Intraseasonal Dynamics and Dominant Sequences in H3N2 Influenza

    Get PDF
    Long-term influenza evolution has been well studied, but the patterns of sequence diversity within seasons are less clear. H3N2 influenza genomes sampled from New York State over ten years indicated intraseasonal changes in evolutionary dynamics. Using the mean Hamming distance of a set of amino acid or nucleotide sequences as an indicator of its diversity, we found that influenza sequence diversity was significantly higher during the early epidemic period than later in the influenza season. Diversity was lowest during the peak of the epidemic, most likely due to the high prevalence of a single dominant amino acid sequence or very few dominant sequences during the peak epidemic period, corresponding with rapid expansion of the viral population. The frequency and duration of dominant sequences varied by influenza protein, but all proteins had an abundance of one distinct sequence during the peak epidemic period. In New York State from 1995 to 2005, high sequence diversity during the early epidemic suggested that seasonal antigenic drift could have occurred primarily in this period, followed by a clonal expansion of typically one clade during the peak of the epidemic, possibly indicating a shift to neutral drift or purifying selection

    Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus : studies in the pig model of influenza

    Get PDF
    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs

    Stochastic Processes Are Key Determinants of Short-Term Evolution in Influenza A Virus

    Get PDF
    Understanding the evolutionary dynamics of influenza A virus is central to its surveillance and control. While immune-driven antigenic drift is a key determinant of viral evolution across epidemic seasons, the evolutionary processes shaping influenza virus diversity within seasons are less clear. Here we show with a phylogenetic analysis of 413 complete genomes of human H3N2 influenza A viruses collected between 1997 and 2005 from New York State, United States, that genetic diversity is both abundant and largely generated through the seasonal importation of multiple divergent clades of the same subtype. These clades cocirculated within New York State, allowing frequent reassortment and generating genome-wide diversity. However, relatively low levels of positive selection and genetic diversity were observed at amino acid sites considered important in antigenic drift. These results indicate that adaptive evolution occurs only sporadically in influenza A virus; rather, the stochastic processes of viral migration and clade reassortment play a vital role in shaping short-term evolutionary dynamics. Thus, predicting future patterns of influenza virus evolution for vaccine strain selection is inherently complex and requires intensive surveillance, whole-genome sequencing, and phenotypic analysis

    Blood Pressure Lowering With Nilvadipine in Patients With Mild-to-Moderate Alzheimer Disease Does Not Increase the Prevalence of Orthostatic Hypotension

    Get PDF
    BACKGROUND: Hypertension is common among patients with Alzheimer disease. Because this group has been excluded from hypertension trials, evidence regarding safety of treatment is lacking. This secondary analysis of a randomized controlled trial assessed whether antihypertensive treatment increases the prevalence of orthostatic hypotension (OH) in patients with Alzheimer disease. METHODS AND RESULTS: Four hundred seventy‐seven patients with mild‐to‐moderate Alzheimer disease were randomized to the calcium‐channel blocker nilvadipine 8 mg/day or placebo for 78 weeks. Presence of OH (blood pressure drop ≥20/≥10 mm Hg after 1 minute of standing) and OH‐related adverse events (dizziness, syncope, falls, and fractures) was determined at 7 follow‐up visits. Mean age of the study population was 72.2±8.2 years and mean Mini‐Mental State Examination score was 20.4±3.8. Baseline blood pressure was 137.8±14.0/77.0±8.6 mm Hg. Grade I hypertension was present in 53.4% (n=255). After 13 weeks, blood pressure had fallen by −7.8/−3.9 mm Hg for nilvadipine and by −0.4/−0.8 mm Hg for placebo (P<0.001). Across the 78‐week intervention period, there was no difference between groups in the proportion of patients with OH at a study visit (odds ratio [95% CI]=1.1 [0.8–1.5], P=0.62), nor in the proportion of visits where a patient met criteria for OH, corrected for number of visits (7.7±13.8% versus 7.3±11.6%). OH‐related adverse events were not more often reported in the intervention group compared with placebo. Results were similar for those with baseline hypertension. CONCLUSIONS: This study suggests that initiation of a low dose of antihypertensive treatment does not significantly increase the risk of OH in patients with mild‐to‐moderate Alzheimer disease. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02017340

    Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile

    Get PDF
    The characteristics of the open vent activity of Villarrica volcano, Chile, were studied in detail by integrating visual observations of the lava lake, analysis of the seismic tremor, and measurements of SO2 flux. The outgassing activity comprises a persistent gas plume emission from the bottom of the crater as well as frequent explosive events. Three main styles of bubble bursting were identified at the surface of the active lava lake: seething magma, small short-lived lava fountains, and Strombolian explosions. Seething magma consists of continual burst of relatively small bubbles (a few meters in diameter) with varying strength over the entire surface of the lava lake. Small lava fountains, seen as a vigorous extension of seething magma, commonly have durations of 20–120 s and reach 10–40 m high above the lava lake. Correlations between seismicity and visual observations indicate that the seismic tremor is mostly caused by the explosive outgassing activity. Furthermore, for different periods between 2000 and 2006, during which the activity remained comparable, the real-time seismic amplitude measurement system (RSAM) and SO2 emission rates show a very good correlation. Higher SO2 emissions appeared to be related to higher levels of the lava lake, stronger bubble bursting activity, and changes in the morphology and texture of the crater floor. Background (low) levels of activity correspond to a lava lake located >80 m below the crater rim, small and/or blocky morphology of the roof, seismic amplitude (RSAM) lower than 25 units, few volcano-tectonic earthquakes, and daily averages of SO2 emissions lower than 600 Mg/d
    corecore