112 research outputs found
Simulations aux grandes échelles de l'écoulement diphasique dans des modèles d'injecteur de moteurs aéronautiques
Afin de répondre à des normes environnementales plus restrictives, les moteurs aéronautiques doivent réduire leur consommation de carburant et leurs émissions polluantes. Parvenir à ces objectifs nécessite notamment d'optimiser l'étage d'injection. La Simulation aux Grandes Echelles (SGE) contribue à cette problématique car elle permet de mieux comprendre les phénomènes instationnaires dans l'injecteur. Cependant, l'application de la SGE aux écoulements turbulents diphasiques reste délicate à cause des phénomènes liés au spray : l'atomisation, la dispersion et la vaporisation des gouttes. Dans cette thèse, ces aspects sont étudiés selon une démarche progressive. Dans un premier temps, l'approche SGE est appliquée à une configuration académique d'injecteur afin de se concentrer sur la polydispersion de l'écoulement gaz-particules. Cette étude passe par une comparaison des résultats numériques avec les mesures, et constitue une validation de l'outil de calcul. Cet outil est ensuite utilisé pour étudier l'écoulement diphasique dans un nouveau concept d'injecteur industriel, notamment en s'appuyant sur une comparaison avec l'expérience. Cette étude permet aussi de connaître les performances et d'identifier les améliorations possibles de cet injecteur. Enfin, la sensibilité de la SGE aux différentes stratégies d'injection est évaluée. ABSTRACT : Facing more stringent environmental regulations, aeronautical engines must reduce their fuel consumptions and decrease polluting emissions. Reaching such purposes requires the optimization of the injection stage. Large Eddy Simulation (LES) contributes to this subject since it allows a better understanding of unsteady phenomena in the injector. Nevertheless, applying LES to turbulent two-phase flows remains a challenge due to phenomena related to the spray : atomization, dispersion and vaporization of droplets. In this thesis, such mechanisms are studied in a progressive methodology. In a first step, the LES approach is applied to an academic configuration with a polydisperse injector. This study goes through a comparison between numerical results and measurements, and constitutes a validation of the computational tool. This tool is then used to investigate the two-phase flow in a new industrial injector design through a comparison with experiments. This investigation also identifies the performances and potential improvements of such an injector. Finally, LES sensitivity to different injection strategies is assesse
Towards truly simultaneous PIXE and RBS analysis of layered objects in cultural heritage
For a long time, RBS and PIXE techniques have been used in the field of
cultural heritage. Although the complementarity of both techniques has long
been acknowledged, its full potential has not been yet developed due to the
lack of general purpose software tools for analysing the data from both
techniques in a coherent way. In this work we provide an example of how the
recent addition of PIXE to the set of techniques supported by the DataFurnace
code can significantly change this situation. We present a case in which a non
homogeneous sample (an oxidized metal from a photographic plate -heliography-
made by Niepce in 1827) is analysed using RBS and PIXE in a straightforward and
powerful way that can only be performed with a code that treats both techniques
simultaneously as a part of one single and coherent analysis. The optimization
capabilities of DataFurnace, allowed us to obtain the composition profiles for
these samples in a very simple way.Comment: 9 pages, 3 figure
Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence
<p>Abstract</p> <p>Background</p> <p>Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD).</p> <p>Methods</p> <p>The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software <it>Code_Saturne</it><sup>® </sup>(<url>http://www.code-saturne.org</url>) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations.</p> <p>Results</p> <p>We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows.</p> <p>Conclusions</p> <p>CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments.</p
A modular analysis of the Auxin signalling network
Auxin is essential for plant development from embryogenesis onwards. Auxin acts in large part through regulation of transcription. The proteins acting in the signalling pathway regulating transcription downstream of auxin have been identified as well as the interactions between these proteins, thus identifying the topology of this network implicating 54 Auxin Response Factor (ARF) and Aux/IAA (IAA) transcriptional regulators. Here, we study the auxin signalling pathway by means of mathematical modeling at the single cell level. We proceed analytically, by considering the role played by five functional modules into which the auxin pathway can be decomposed: the sequestration of ARF by IAA, the transcriptional repression by IAA, the dimer formation amongst ARFs and IAAs, the feedback loop on IAA and the auxin induced degradation of IAA proteins. Focusing on these modules allows assessing their function within the dynamics of auxin signalling. One key outcome of this analysis is that there are both specific and overlapping functions between all the major modules of the signaling pathway. This suggests a combinatorial function of the modules in optimizing the speed and amplitude of auxin-induced transcription. Our work allows identifying potential functions for homo- and hetero-dimerization of transcriptional regulators, with ARF:IAA, IAA:IAA and ARF:ARF dimerization respectively controlling the amplitude, speed and sensitivity of the response and a synergistic effect of the interaction of IAA with transcriptional repressors on these characteristics of the signaling pathway. Finally, we also suggest experiments which might allow disentangling the structure of the auxin signaling pathway and analysing further its function in plants
Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea
: In the wake of the recent outbreak of Ebola virus disease (EVD) in several African countries, the World Health Organization prioritized the evaluation of treatment with convalescent plasma derived from patients who have recovered from the disease. We evaluated the safety and efficacy of convalescent plasma for the treatment of EVD in Guinea. : In this nonrandomized, comparative study, 99 patients of various ages (including pregnant women) with confirmed EVD received two consecutive transfusions of 200 to 250 ml of ABO-compatible convalescent plasma, with each unit of plasma obtained from a separate convalescent donor. The transfusions were initiated on the day of diagnosis or up to 2 days later. The level of neutralizing antibodies against Ebola virus in the plasma was unknown at the time of administration. The control group was 418 patients who had been treated at the same center during the previous 5 months. The primary outcome was the risk of death during the period from 3 to 16 days after diagnosis with adjustments for age and the baseline cycle-threshold value on polymerase-chain-reaction assay; patients who had died before day 3 were excluded. The clinically important difference was defined as an absolute reduction in mortality of 20 percentage points in the convalescent-plasma group as compared with the control group. : A total of 84 patients who were treated with plasma were included in the primary analysis. At baseline, the convalescent-plasma group had slightly higher cycle-threshold values and a shorter duration of symptoms than did the control group, along with a higher frequency of eye redness and difficulty in swallowing. From day 3 to day 16 after diagnosis, the risk of death was 31% in the convalescent-plasma group and 38% in the control group (risk difference, -7 percentage points; 95% confidence interval [CI], -18 to 4). The difference was reduced after adjustment for age and cycle-threshold value (adjusted risk difference, -3 percentage points; 95% CI, -13 to 8). No serious adverse reactions associated with the use of convalescent plasma were observed. : The transfusion of up to 500 ml of convalescent plasma with unknown levels of neutralizing antibodies in 84 patients with confirmed EVD was not associated with a significant improvement in survival. (Funded by the European Union's Horizon 2020 Research and Innovation Program and others; ClinicalTrials.gov number, NCT02342171.).<br/
Protective Effects of Walnut Extract Against Amyloid Beta Peptide-Induced Cell Death and Oxidative Stress in PC12 Cells
Amyloid beta-protein (Aβ) is the major component of senile plaques and cerebrovascular amyloid deposits in individuals with Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge reactive oxygen species (ROS), thereby offering protection against oxidative stress. Walnuts are rich in components that have anti-oxidant and anti-inflammatory properties. The inhibition of in vitro fibrillization of synthetic Aβ, and solubilization of preformed fibrillar Aβ by walnut extract was previously reported. The present study was designed to investigate whether walnut extract can protect against Aβ-induced oxidative damage and cytotoxicity. The effect of walnut extract on Aβ-induced cellular damage, ROS generation and apoptosis in PC12 pheochromocytoma cells was studied. Walnut extract reduced Aβ-mediated cell death assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, and release of lactate dehydrogenase (membrane damage), DNA damage (apoptosis) and generation of ROS in a concentration-dependent manner. These results suggest that walnut extract can counteract Aβ-induced oxidative stress and associated cell death
A coleção fotográfica V-8
This article is about the historical photos of Campinas city and its characters, shot\ud
by photographer Aristides Pedro da Silva, known as V-8. The study relates the paths taken by\ud
the photographer, the collections sources and composition, the circulation of the images in\ud
Campinas and the collections purchase by Unicamp/Centro de Memória (Memory Centre),\ud
in addition to its organisation and preservation
- …