144 research outputs found

    Are genetic risk factors for psychosis also associated with dimension-specific psychotic experiences in adolescence?

    Get PDF
    Psychosis has been hypothesised to be a continuously distributed quantitative phenotype and disorders such as schizophrenia and bipolar disorder represent its extreme manifestations. Evidence suggests that common genetic variants play an important role in liability to both schizophrenia and bipolar disorder. Here we tested the hypothesis that these common variants would also influence psychotic experiences measured dimensionally in adolescents in the general population. Our aim was to test whether schizophrenia and bipolar disorder polygenic risk scores (PRS), as well as specific single nucleotide polymorphisms (SNPs) previously identified as risk variants for schizophrenia, were associated with adolescent dimension-specific psychotic experiences. Self-reported Paranoia, Hallucinations, Cognitive Disorganisation, Grandiosity, Anhedonia, and Parent-rated Negative Symptoms, as measured by the Specific Psychotic Experiences Questionnaire (SPEQ), were assessed in a community sample of 2,152 16-year-olds. Polygenic risk scores were calculated using estimates of the log of odds ratios from the Psychiatric Genomics Consortium GWAS stage-1 mega-analysis of schizophrenia and bipolar disorder. The polygenic risk analyses yielded no significant associations between schizophrenia and bipolar disorder PRS and the SPEQ measures. The analyses on the 28 individual SNPs previously associated with schizophrenia found that two SNPs in TCF4 returned a significant association with the SPEQ Paranoia dimension, rs17512836 (p-value=2.57x10-4) and rs9960767 (p-value=6.23x10-4). Replication in an independent sample of 16-year-olds (N=3,427) assessed using the Psychotic-Like Symptoms Questionnaire (PLIKS-Q), a composite measure of multiple positive psychotic experiences, failed to yield significant results. Future research with PRS derived from larger samples, as well as larger adolescent validation samples, would improve the predictive power to test these hypotheses further. The challenges of relating adult clinical diagnostic constructs such as schizophrenia to adolescent psychotic experiences at a genetic level are discussed

    A New Role for Translation Initiation Factor 2 in Maintaining Genome Integrity

    Get PDF
    Escherichia coli translation initiation factor 2 (IF2) performs the unexpected function of promoting transition from recombination to replication during bacteriophage Mu transposition in vitro, leading to initiation by replication restart proteins. This function has suggested a role of IF2 in engaging cellular restart mechanisms and regulating the maintenance of genome integrity. To examine the potential effect of IF2 on restart mechanisms, we characterized its influence on cellular recovery following DNA damage by methyl methanesulfonate (MMS) and UV damage. Mutations that prevent expression of full-length IF2-1 or truncated IF2-2 and IF2-3 isoforms affected cellular growth or recovery following DNA damage differently, influencing different restart mechanisms. A deletion mutant (del1) expressing only IF2-2/3 was severely sensitive to growth in the presence of DNA-damaging agent MMS. Proficient as wild type in repairing DNA lesions and promoting replication restart upon removal of MMS, this mutant was nevertheless unable to sustain cell growth in the presence of MMS; however, growth in MMS could be partly restored by disruption of sulA, which encodes a cell division inhibitor induced during replication fork arrest. Moreover, such characteristics of del1 MMS sensitivity were shared by restart mutant priA300, which encodes a helicase-deficient restart protein. Epistasis analysis indicated that del1 in combination with priA300 had no further effects on cellular recovery from MMS and UV treatment; however, the del2/3 mutation, which allows expression of only IF2-1, synergistically increased UV sensitivity in combination with priA300. The results indicate that full-length IF2, in a function distinct from truncated forms, influences the engagement or activity of restart functions dependent on PriA helicase, allowing cellular growth when a DNA–damaging agent is present

    Comparison of Bone and Renal Effects In HIV-infected Adults Switching to Abacavir or Tenofovir Based Therapy in a Randomized Trial

    Get PDF
    Our objective was to compare the bone and renal effects among HIV-infected patients randomized to abacavir or tenofovir-based combination anti-retroviral therapy.In an open-label randomized trial, HIV-infected patients were randomized to switch from zidovudine/lamivudine (AZT/3TC) to abacavir/lamivudine (ABC/3TC) or tenofovir/emtricitabine (TDF/FTC). We measured bone mass density (BMD) and bone turnover biomarkers (osteocalcin, osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), alkaline phosphatase, type I collagen cross-linked C-telopeptide (CTx), and osteoprotegerin). We assessed renal function by estimated creatinine clearance, plasma cystatin C, and urinary levels of creatinine, albumin, cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL). The changes from baseline in BMD and renal and bone biomarkers were compared across study arms.Of 40 included patients, 35 completed 48 weeks of randomized therapy and follow up. BMD was measured in 33, 26, and 27 patients at baseline, week 24, and week 48, respectively. In TDF/FTC-treated patients we observed significant reductions from baseline in hip and lumbar spine BMD at week 24 (-1.8% and -2.5%) and week 48 (-2.1% and -2.1%), whereas BMD was stable in patients in the ABC/3TC arm. The changes from baseline in BMD were significantly different between study arms. All bone turnover biomarkers except osteoprotegerin increased in the TDF/FTC arm compared with the ABC/3TC arm, but early changes did not predict subsequent loss of BMD. Renal function parameters were similar between study arms although a small increase in NGAL was detected among TDF-treated patients.Switching to TDF/FTC-based therapy led to decreases in BMD and increases in bone turnover markers compared with ABC/3TC-based treatment. No major difference in renal function was observed.Clinicaltrials.gov NCT00647244

    Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

    Get PDF
    Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement

    Innovation Practices in Emerging Economies: Do University Partnerships Matter?

    Get PDF
    Enterprises’ resources and capabilities determine their ability to achieve competitive advantage. In this regard, the key innovation challenges that enterprises face are liabilities associated with their age and size, and the entry barriers imposed on them. In this line, a growing number of enterprises are starting to implement innovation practices in which they employ both internal/external flows of knowledge in order to explore/exploit innovation in collaboration with commercial or scientific agents. Within this context, universities play a significant role providing fertile knowledge-intensive environments to support the exploration and exploitation of innovative and entrepreneurial ideas, especially in emerging economies, where governments have created subsidies to promote enterprise innovation through compulsory university partnerships. Based on these ideas, the purpose of this exploratory research is to provide a better understanding about the role of universities on enterprises’ innovation practices in emerging economies. More concretely, in the context of Mexico, we explored the enterprises’ motivations to collaborate with universities in terms of innovation purposes (exploration and exploitation) or alternatives to access to public funds (compulsory requirement of being involved in a university partnership). Using a sample of 10,167 Mexican enterprises in the 2012 Research and Technological Development Survey collected by the Mexican National Institute of Statistics and Geography, we tested a multinomial regression model. Our results provide insights about the relevant role of universities inside enterprises’ exploratory innovation practices, as well as, in the access of R&D research subsidies

    Genomic view of the evolution of the complement system

    Get PDF
    The recent accumulation of genomic information of many representative animals has made it possible to trace the evolution of the complement system based on the presence or absence of each complement gene in the analyzed genomes. Genome information from a few mammals, chicken, clawed frog, a few bony fish, sea squirt, fruit fly, nematoda and sea anemone indicate that bony fish and higher vertebrates share practically the same set of complement genes. This suggests that most of the gene duplications that played an essential role in establishing the mammalian complement system had occurred by the time of the teleost/mammalian divergence around 500 million years ago (MYA). Members of most complement gene families are also present in ascidians, although they do not show a one-to-one correspondence to their counterparts in higher vertebrates, indicating that the gene duplications of each gene family occurred independently in vertebrates and ascidians. The C3 and factor B genes, but probably not the other complement genes, are present in the genome of the cnidaria and some protostomes, indicating that the origin of the central part of the complement system was established more than 1,000 MYA

    Large Tandem, Higher Order Repeats and Regularly Dispersed Repeat Units Contribute Substantially to Divergence Between Human and Chimpanzee Y Chromosomes

    Get PDF
    Comparison of human and chimpanzee genomes has received much attention, because of paramount role for understanding evolutionary step distinguishing us from our closest living relative. In order to contribute to insight into Y chromosome evolutionary history, we study and compare tandems, higher order repeats (HORs), and regularly dispersed repeats in human and chimpanzee Y chromosome contigs, using robust Global Repeat Map algorithm. We find a new type of long-range acceleration, human-accelerated HOR regions. In peripheral domains of 35mer human alphoid HORs, we find riddled features with ten additional repeat monomers. In chimpanzee, we identify 30mer alphoid HOR. We construct alphoid HOR schemes showing significant human-chimpanzee difference, revealing rapid evolution after human-chimpanzee separation. We identify and analyze over 20 large repeat units, most of them reported here for the first time as: chimpanzee and human ~1.6 kb 3mer secondary repeat unit (SRU) and ~23.5 kb tertiary repeat unit (~0.55 kb primary repeat unit, PRU); human 10848, 15775, 20309, 60910, and 72140 bp PRUs; human 3mer SRU (~2.4 kb PRU); 715mer and 1123mer SRUs (5mer PRU); chimpanzee 5096, 10762, 10853, 60523 bp PRUs; and chimpanzee 64624 bp SRU (10853 bp PRU). We show that substantial human-chimpanzee differences are concentrated in large repeat structures, at the level of as much as ~70% divergence, sizably exceeding previous numerical estimates for some selected noncoding sequences. Smeared over the whole sequenced assembly (25 Mb) this gives ~14% human--chimpanzee divergence. This is significantly higher estimate of divergence between human and chimpanzee than previous estimates.Comment: 22 pages, 7 figures, 12 tables. Published in Journal of Molecular Evolutio
    corecore