186 research outputs found

    Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study.

    Full text link
    BACKGROUND: Metal corrosion in seawater has been extensively studied in surface and shallow waters. However, infrastructure is increasingly being installed in deep-sea environments, where extremes of temperature, salinity, and high hydrostatic pressure increase the costs and logistical challenges associated with monitoring corrosion. Moreover, there is currently only a rudimentary understanding of the role of microbially induced corrosion, which has rarely been studied in the deep-sea. We report here an integrative study of the biofilms growing on the surface of corroding mooring chain links that had been deployed for 10 years at ~2 km depth and developed a model of microbially induced corrosion based on flux-balance analysis. METHODS: We used optical emission spectrometry to analyze the chemical composition of the mooring chain and energy-dispersive X-ray spectrometry coupled with scanning electron microscopy to identify corrosion products and ultrastructural features. The taxonomic structure of the microbiome was determined using shotgun metagenomics and was confirmed by 16S amplicon analysis and quantitative PCR of the dsrB gene. The functional capacity was further analyzed by generating binned, genomic assemblies and performing flux-balance analysis on the metabolism of the dominant taxa. RESULTS: The surface of the chain links showed intensive and localized corrosion with structural features typical of microbially induced corrosion. The microbiome on the links differed considerably from that of the surrounding sediment, suggesting selection for specific metal-corroding biofilms dominated by sulfur-cycling bacteria. The core metabolism of the microbiome was reconstructed to generate a mechanistic model that combines biotic and abiotic corrosion. Based on this metabolic model, we propose that sulfate reduction and sulfur disproportionation might play key roles in deep-sea corrosion. CONCLUSIONS: The corrosion rate observed was higher than what could be expected from abiotic corrosion mechanisms under these environmental conditions. High corrosion rate and the form of corrosion (deep pitting) suggest that the corrosion of the chain links was driven by both abiotic and biotic processes. We posit that the corrosion is driven by deep-sea sulfur-cycling microorganisms which may gain energy by accelerating the reaction between metallic iron and elemental sulfur. The results of this field study provide important new insights on the ecophysiology of the corrosion process in the deep sea

    Draft genome sequence of Enterobacter sp. strain EA-1, an electrochemically active microorganism isolated from tropical sediment

    Full text link
    © 2018 Doyle et al. Enterobacter sp. strain EA-1 is an electrochemically active bacterium isolated from tropical sediment in Singapore. Here, the annotated draft genome assembly of the bacterium is reported. Whole-genome comparison indicates that Enterobacter sp. EA-1, along with a previously sequenced Enterobacter isolate from East Asia, forms a distinct clade within the Enterobacter genus

    Citizen-Science for the Future: Advisory Case Studies From Around the Globe

    Get PDF
    The democratization of ocean observation has the potential to add millions of observations every day. Though not a solution for all ocean monitoring needs, citizen scientists offer compelling examples showcasing their ability to augment and enhance traditional research and monitoring. Information they are providing is increasing the spatial and temporal frequency and duration of sampling, reducing time and labor costs for academic and government monitoring programs, providing hands-on STEM learning related to real-world issues and increasing public awareness and support for the scientific process. Examples provided here demonstrate the wide range of people who are already dramatically reducing gaps in our global observing network while at the same time providing unique opportunities to meaningfully engage in ocean observing and the research and conservation it supports. While there are still challenges to overcome before widespread inclusion in projects requiring scientific rigor, the growing organization of international citizen science associations is helping to reduce barriers. The case studies described support the idea that citizen scientists should be part of an effective global strategy for a sustained, multidisciplinary and integrated observing system

    Reconnection surgery in adult post-operative short bowel syndrome < 100 cm: is colonic continuity sufficient to achieve enteral autonomy without autologous gastrointestinal reconstruction? Report from a single center and systematic review of literature

    Get PDF
    A systematic bibliographic research concerning patients operated on for SBS was performed: inclusion criteria were adult age, reconnection surgery and SBS &lt; 100 cm. Autologous gastrointestinal reconstruction represented an exclusion criteria. The outcomes of interest were the rate of total parenteral nutrition (TPN) independence and the length of follow-up (minimum 1 year) after surgery. We reviewed our experience from 2003 to 2013 with minimum 1-year follow-up, dealing with reconnection surgery in 13 adults affected by &lt; 100 cm SBS after massive small bowel resection: autologous gastrointestinal reconstruction was not feasible. Three (out of 5168 screened papers) non randomized controlled trials with 116 adult patients were analysed showing weaning from TPN (40%, 50% and 90% respectively) after reconnection surgery without autologous gastrointestinal reconstruction. Among our 13 adults, mean age was 54.1 years (53.8 % ASA III): 69.2 % had a high stomal output (&gt; 500 cc/day) and TPN dependence was 100%. We performed a jejuno-colonic anastomosis (SBS type II) in 53.8%, in 46.1% of cases without ileo-cecal valve, leaving a mean residual small bowel length of 75.7 cm. In-hospital mortality was 0%. After a minimum period of 1 year of intestinal rehabilitation, all our patients (100%) went back to oral intake and 69.2% were off TPN (9 patients). No one was listed for transplantation. A residual small bowel length of minimum 75 cm, even if reconnected to part of the colon, seems able to produce a TPN independence without autologous gastrointestinal reconstruction after a minimum period of 1 year of intestinal rehabilitation

    Metagenomics Reveals the Influence of Land Use and Rain on the Benthic Microbial Communities in a Tropical Urban Waterway

    Get PDF
    Growing demands for potable water have led to extensive reliance on waterways in tropical megacities. Attempts to manage these waterways in an environmentally sustainable way generally lack an understanding of microbial processes and how they are influenced by urban factors, such as land use and rain. Here, we describe the composition and functional potential of benthic microbial communities from an urban waterway network and analyze the effects of land use and rain perturbations on these communities. With a sequence depth of 3 billion reads from 48 samples, these metagenomes represent nearly full coverage of microbial communities. The predominant taxa in these waterways were Nitrospira and Coleofasciculus, indicating the presence of nitrogen and carbon fixation in this system. Gene functions from carbohydrate, protein, and nucleic acid metabolism suggest the presence of primary and secondary productivity in such nutrient-deficient systems. Comparison of microbial communities by land use type and rain showed that while there are significant differences in microbial communities in land use, differences due to rain perturbations were rain event specific. The more diverse microbial communities in the residential areas featured a higher abundance of reads assigned to genes related to community competition. However, the less diverse communities from industrial areas showed a higher abundance of reads assigned to specialized functions such as organic remediation. Finally, our study demonstrates that microbially diverse populations in well-managed waterways, where contaminant levels are within defined limits, are comparable to those in other relatively undisturbed freshwater systems

    Environmental DNA signatures distinguish between tsunami and storm deposition in overwash sand

    Full text link
    AbstractSandy onshore deposits from tsunamis are difficult to distinguish from storm deposits, which makes it difficult to assess coastal hazards from the geological record. Here we analyse environmental DNA from microbial communities preserved in known tsunami and storm-deposited sediments and intercalating soils and non-marine sediments near Cuddalore, India, and Phra Thong Island, Thailand. Both sites were impacted by the 2004 Indian Ocean Tsunami and a subsequent storm flooding event (2011 Cyclone Thane at Cuddalore and a 2007 storm at Phra Thong Island). We show that the microbial communities in the overwash deposits are significantly different from soil and sediments that are not derived by overwash processes at both locations. Our method also successfully discriminates between modern tsunami deposits and storm deposits. We suggest molecular techniques have the potential to accurately discriminate overwash deposits from catastrophic natural events.</jats:p

    Hypoglycemia Assessed by Continuous Glucose Monitoring Is Associated with Preclinical Atherosclerosis in Individuals with Impaired Glucose Tolerance

    Get PDF
    Hypoglycemia is associated with increased risk of cardiovascular adverse clinical outcomes. There is evidence that impaired glucose tolerance (IGT) is associated with cardiovascular morbidity and mortality. Whether IGT individuals have asymptomatic hypoglycemia under real-life conditions that are related to early atherosclerosis is unknown. To this aim, we measured episodes of hypoglycemia during continuous interstitial glucose monitoring (CGM) and evaluated their relationship with early manifestation of vascular atherosclerosis in glucose tolerant and intolerant individuals. An oral glucose tolerance test (OGTT) was performed in 79 non-diabetic subjects. Each individual underwent continuous glucose monitoring for 72 h. Cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. IGT individuals had a worse cardiovascular risk profile, including higher IMT, and spent significantly more time in hypoglycemia than glucose-tolerant individuals. IMT was significantly correlated with systolic (r = 0.22; P = 0.05) and diastolic blood pressure (r = 0.28; P = 0.01), total (r = 0.26; P = 0.02) and LDL cholesterol (r = 0.27; P = 0.01), 2-h glucose (r = 0.39; P<0.0001), insulin sensitivity (r = −0.26; P = 0.03), and minutes spent in hypoglycemia (r = 0.45; P<0.0001). In univariate analyses adjusted for gender, minutes spent in hypoglycemia were significantly correlated with age (r = 0.26; P = 0.01), waist circumference (r = 0.33; P = 0.003), 2-h glucose (r = 0.58; P<0.0001), and 2-h insulin (r = 0.27; P = 0.02). In a stepwise multivariate regression analysis, the variables significantly associated with IMT were minutes spent in hypoglycemia (r2 = 0.252; P<0.0001), and ISI index (r2 = 0.089; P = 0.004), accounting for 34.1% of the variation. Episodes of hypoglycemia may be considered as a new potential cardiovascular risk factor for IGT individuals

    Phylogenetic organization of bacterial activity.

    Get PDF
    Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism\u27s ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions.The ISME Journal advance online publication, 4 March 2016; doi:10.1038/ismej.2016.28

    Citizen-science for the future: Advisory case studies from around the globe

    Full text link
    © 2019 Simoniello, Jencks, Lauro, Loftis, Weslawski, Deja, Forrest, Gossett, Jeffries, Jensen, Kobara, Nolan, Ostrowski, Pounds, Roseman, Basco, Gosselin, Reed, Wills and Wyatt. The democratization of ocean observation has the potential to add millions of observations every day. Though not a solution for all ocean monitoring needs, citizen scientists offer compelling examples showcasing their ability to augment and enhance traditional research and monitoring. Information they are providing is increasing the spatial and temporal frequency and duration of sampling, reducing time and labor costs for academic and government monitoring programs, providing hands-on STEM learning related to real-world issues and increasing public awareness and support for the scientific process. Examples provided here demonstrate the wide range of people who are already dramatically reducing gaps in our global observing network while at the same time providing unique opportunities to meaningfully engage in ocean observing and the research and conservation it supports. While there are still challenges to overcome before widespread inclusion in projects requiring scientific rigor, the growing organization of international citizen science associations is helping to reduce barriers. The case studies described support the idea that citizen scientists should be part of an effective global strategy for a sustained, multidisciplinary and integrated observing system
    corecore