73 research outputs found

    Insulin-mediated increases in arterial baroreflex control of muscle sympathetic nerve activity following meal intake in humans [abstract]

    Get PDF
    Animal studies indicate that insulin enhances arterial baroreflex (ABR) control of sympathetic nerve activity (SNA); however, the extent to which these findings can be extrapolated to humans is unknown. To begin to address this, we utilized a mixed meal as a physiological method to evoke sustained increases in plasma insulin

    Effects of Isometric Handgrip Training in Patients With Peripheral Artery Disease: A Randomized Controlled Trial

    Get PDF
    BackgroundMeta‐analyses have shown that isometric handgrip training (IHT) can reduce brachial systolic and diastolic blood pressure (BP) by >6/4 mm Hg, respectively. However, whether IHT promotes these effects among patients with peripheral artery disease, who exhibit severe impairment in cardiovascular function, is currently unknown. This study aimed to evaluate the effects of IHT on the cardiovascular function of patients with peripheral artery disease. Methods and ResultsA randomized controlled trial with peripheral artery disease patients assigned to either the IHT or control group was conducted. The IHT group performed 3 sessions per week, for 8 weeks, of unilateral handgrip exercises, consisting of 4 sets of isometric contractions for 2 minutes at 30% of maximum voluntary contraction and a 4‐minute interval between sets. The control group received a compression ball in order to minimize the placebo effects, representing sham training. The primary outcome was brachial BP. The secondary outcomes were central BP, arterial stiffness parameters, cardiac autonomic modulation, and vascular function. The IHT program reduced diastolic BP (75 [10] mm Hg preintervention versus 72 [11] mm Hg postintervention), with no change in the control group (74 [11] mm Hg preintervention versus 74 [11] mm Hg postintervention), with this between‐group difference being significant (P=0.04). Flow‐mediated dilation improved in the IHT group (6.0% [5.7] preintervention versus 9.7% [5.5] postintervention), with no change in the control group (7.6% [5.5] preintervention versus 7.4% [5.1] postintervention), with this between‐group difference being significant (P=0.04). There was no change in other measured variables over the intervention period. ConclusionsIHT reduced brachial diastolic BP and improved local vascular function in patients with peripheral artery disease

    Impact of whole-body passive heat stress and arterial shear rate modification on radial artery function in young men

    Get PDF
    We sought to determine how whole-body heating acutely influences radial artery function, characterized using flow mediated dilation (FMD) and low-flow mediated constriction (L-FMC), and the mechanistic role of shear rate modification on radial artery functional characteristics during heating. Eleven young healthy men underwent whole-body heating (water-perfused suit) sufficient to raise core temperature +1°C. Trials were repeated with (Heat+WC) and without (Heat) the application of a wrist cuff located distal to the radial artery examined, known to prevent increases in mean and anterograde shear rate but increase retrograde shear. Radial artery characteristics were assessed throughout each trial, with FMD and L-FMC assessed prior to and upon reaching the target core temperature. Heat markedly increased radial artery mean and anterograde shear rate, along with radial artery diameter and blood flow (P<0.05). Heat+WC abolished the heat-induced increase mean and anterograde shear rate (P>0.05), but markedly increased retrograde shear (P<0.05). Concomitantly, increases in radial artery diameter and blood flow were decreased (Heat+WC vs Heat,P<0.05). Heat attenuated FMD (8.6±1.2 vs. 2.2±1.4%, P<0.05), whereas no change in FMD was observed in Heat+WC (7.8±1.2 vs. 10.8±1.2%,P>0.05). In contrast, L-FMC was not different in either trial (P>0.05). In summary, acute whole-body heating markedly elevates radial artery shear rate, diameter and blood flow, and diminishes FMD. However, marked radial artery vasodilation and diminished FMD are absent when these shear rate changes are prevented. Shear rate modifications underpinthe radial artery response to acute whole-body heat-stress, but further endothelial-dependent vasodilation (FMD) is attenuated likely as the vasodilatory range limit is approached

    Effects of disturbed blood flow during exercise on endothelial function : a time course analysis

    Get PDF
    This study aimed to examine the time course of endothelial function after a single handgrip exercise session combined with blood flow restriction in healthy young men. Nine participants (28±5.8 years) completed a single session of bilateral dynamic handgrip exercise (20 min with 60% of the maximum voluntary contraction). To induce blood flow restriction, a cuff was placed 2 cm below the antecubital fossa in the experimental arm. This cuff was inflated to 80 mmHg before initiation of exercise and maintained through the duration of the protocol. The experimental arm and control arm were randomly selected for all subjects. Brachial artery flow-mediated dilation (FMD) and blood flow velocity profiles were assessed using Doppler ultrasonography before initiation of the exercise, and at 15 and 60 min after its cessation. Blood flow velocity profiles were also assessed during exercise. There was a significant increase in FMD 15 min after exercise in the control arm compared with before exercise (64.09%±16.59%, P=0.001), but there was no change in the experimental arm (-12.48%±12.64%, P=0.252). FMD values at 15 min post-exercise were significantly higher for the control arm in comparison to the experimental arm (P=0.004). FMD returned to near baseline values at 60 min after exercise, with no significant difference between arms (P=0.424). A single handgrip exercise bout provoked an acute increase in FMD 15 min after exercise, returning to near baseline values at 60 min. This response was blunted by the addition of an inflated pneumatic cuff to the exercising arm

    Muscle metaboreflex and cerebral blood flow regulation in humans:implications for exercise with blood flow restriction

    Get PDF
    We investigated the effect of activating metabolically sensitive skeletal muscle afferents (muscle metaboreflex) on cerebral blood flow and the potentially confounding influence of concomitant changes in the partial pressure of arterial carbon dioxide. Eleven healthy males (25 ± 4 yr) performed submaximal leg cycling exercise on a semirecumbent cycle ergometer (heart rate: ∌120 beats/min), and assessments were made of the partial pressure of end-tidal carbon dioxide (PetCO2), internal carotid artery blood flow (ICAQ) and conductance (ICACVC), and middle cerebral artery mean blood velocity (MCAvm) and conductance index (MCACVCi).The muscle metaboreflex was activated during cycling with leg blood flow restriction (BFR) or isolated with postexercise ischemia (PEI). In separate trials, PetCO2was either permitted to fluctuate spontaneously (control trial) or was clamped at 1 mmHg above resting levels (PetCO2clamp trial). In the control trial, leg cycling with BFR decreased PetCO2(Δ−4.8 ± 0.9 mmHg vs. leg cycling exercise) secondary to hyperventilation, while ICAQ, ICACVC, and MCAvmwere unchanged and MCACVCidecreased. However, in the PetCO2clamp trial, leg cycling with BFR increased both MCAvm(Δ5.9 ± 1.4 cm/s) and ICAQ(Δ20.0 ± 7.8 ml/min) and attenuated the decrease in MCACVCi, while ICACVCwas unchanged. In the control trial, PEI decreased PetCO2(Δ−7.0 ± 1.3 mmHg vs. rest), MCAvmand MCACVCi, whereas ICAQand ICACVCwere unchanged. In contrast, in the PetCO2clamp trial both ICAQ(Δ18.5 ± 11.9 ml/min) and MCAvm(Δ8.8 ± 2.0 cm/s) were elevated, while ICACVCand MCACVCiwere unchanged. In conclusion, when hyperventilation-related decreases in PetCO2are prevented the activation of metabolically sensitive skeletal muscle afferent fibers increases cerebral blood flow.</jats:p

    Supervised, but Not Home-Based, Isometric Training Improves Brachial and Central Blood Pressure in Medicated Hypertensive Patients: A Randomized Controlled Trial

    Get PDF
    Meta-analyses have shown that supervised isometric handgrip training reduces blood pressure in hypertensives. However, the mechanism(s) underlying these effects in medicated hypertensive patients, as well as the effects from home-based exercise training, is uncertain. The purpose of this study was to compare the effects of supervised and home-based isometric handgrip training on cardiovascular parameters in medicated hypertensives. In this randomized controlled trial, 72 hypertensive individuals (38–79 years old, 70% female) were randomly assigned to three groups: home-based, supervised isometric handgrip training or control groups. Home-based and supervised isometric handgrip training was completed thrice weekly (4 × 2 min at 30% of maximal voluntary contraction, with 1-min rest between bouts, alternating the hands). Before and after 12 weeks brachial, central and ambulatory blood pressures (BP), arterial stiffness, heart rate variability, vascular function, oxidative stress and inflammation markers were obtained. No significant (p &gt; 0.05) effect was observed for ambulatory BP, arterial stiffness, heart rate variability, vascular function and oxidative stress and inflammatory markers in all three groups. Brachial BP decreased in the supervised group (Systolic: 132 ± 4 vs. 120 ± 3 mmHg; Diastolic: 71 ± 2 vs. 66 ± 2 mmHg, p &lt; 0.05), whereas no significant differences were observed in the home-based (Systolic: 130 ± 4 vs. 126 ± 3 mmHg; diastolic: 73 ± 3 vs. 71 ± 3 mmHg) and control groups (p &gt; 0.05). Supervised handgrip exercise also reduced central BP systolic (120 ± 5 vs. 109 ± 5 mmHg), diastolic (73 ± 2 vs. 67 ± 2 mmHg); and mean BP (93 ± 3 vs. 84 ± 3 mmHg), whereas no significant effects were found in the home-based (Systolic: 119 ± 4 vs. 115 ± 3 mmHg; Diastolic: 74 ± 3 vs. 71 ± 3 mmHg) and control groups (p &gt; 0.05). In conclusion, supervised, but not home-based, isometric training lowered brachial and central BP in hypertensives

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice
    • 

    corecore