
 
 

Muscle metaboreflex and cerebral blood flow
regulation in humans
Prodel, Eliza; Balanos, George; Braz, Igor D; Nóbrega, Antonio Claudio L; Vianna, Lauro;
Fisher, James
DOI:
10.1152/ajpheart.00894.2015

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Prodel, E, Balanos, GM, Braz, ID, Nóbrega, ACL, Vianna, LC & Fisher, JP 2016, 'Muscle metaboreflex and
cerebral blood flow regulation in humans: implications for exercise with blood flow restriction', American Journal
of Physiology Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.00894.2015

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked March 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185492091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1152/ajpheart.00894.2015
https://research.birmingham.ac.uk/portal/en/publications/muscle-metaboreflex-and-cerebral-blood-flow-regulation-in-humans(e6420051-b42a-48a7-a2ba-52e3ade4932f).html


 1 

 2 

Muscle metaboreflex and cerebral blood flow regulation in humans: implications for 3 

exercise with blood flow restriction 4 

 5 

Eliza Prodel1,2, George M. Balanos1, Igor D. Braz1, Antonio C. L. Nobrega2, Lauro C. Vianna3 & James 6 

P. Fisher1 7 

 8 
1School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, 9 

University of Birmingham, Birmingham, UK; 2Department of Physiology and Pharmacology, Fluminense 10 

Federal University, Niterói, Brazil; 3Faculty of Physical Education, University of Brasília, DF, Brazil 11 

 12 

 13 

Running Title: Cerebral blood flow in dynamic exercise 14 

 15 

 16 

Please send correspondence to: 17 

James P. Fisher, Ph.D. 18 

School of Sport, Exercise and Rehabilitation Sciences  19 

College of Life and Environmental Sciences 20 

University of Birmingham 21 

Edgbaston, Birmingham 22 

B15 2TT, England 23 

Tell:  +44 (0)121 414 8011 24 

Fax: +44 (0)121 414 4121 25 

Email: j.p.fisher@bham.ac.uk  26 

 Am J Physiol Heart Circ Physiol (February 12, 2016). doi:10.1152/ajpheart.00894.2015 

 Copyright © 2016 by the American Physiological Society.



ABSTRACT 27 

We investigated the effect of activating metabolically sensitive skeletal muscle afferents (muscle 28 

metaboreflex) on cerebral blood flow and the potentially confounding influence of concomitant changes 29 

in the partial pressure of arterial carbon dioxide. Eleven healthy males (25±4 years) performed 30 

submaximal leg cycling exercise on a semi-recumbent cycle ergometer (heart rate ~120 bmin-1), and 31 

assessments made of the partial pressure of end-tidal carbon dioxide (PETCO2), internal carotid artery 32 

blood flow (ICAQ) and conductance (ICACVC), middle cerebral artery mean blood velocity (MCAVm) 33 

and conductance index (MCACVCi).The muscle metaboreflex was activated during cycling with leg 34 

blood flow restriction (BFR) or isolated with post exercise ischemia (PEI). In separate trials, PETCO2 35 

was either permitted to fluctuate spontaneously (control trial) or was clamped at 1 mmHg above resting 36 

levels (PETCO2 clamp trial). In the control trial, leg cycling with BFR decreased PETCO2 (Δ-4.8±0.9 37 

mmHg vs. leg cycling exercise) secondary to hyperventilation, while ICAQ, ICACVC, and MCAVm were 38 

unchanged, and MCACVCi decreased. However, in the PETCO2 clamp trial, leg cycling with BFR 39 

increased both MCAVm (Δ5.9±1.4 cm∙s-1) and ICAQ (Δ20.0±7.8 ml∙min-1), and attenuated the decrease 40 

in MCACVCi, while ICACVC was unchanged. In the control trial, PEI decreased PETCO2 (Δ-7.0±1.3 41 

mmHg vs. rest), MCAVm and MCACVCi, whereas ICAQ and ICACVC were unchanged. In contrast, in the 42 

PETCO2 clamp trial both ICAQ (Δ18.5±11.9 ml∙min-1) and MCAVm (Δ8.8±2.0 cm∙s-1) were elevated, 43 

while ICACVC and MCACVCi were unchanged. In conclusion, when hyperventilation-related decreases in 44 

PETCO2 are prevented the activation of metabolically sensitive skeletal muscle afferent fibres increases 45 

cerebral blood flow. 46 

New & Noteworthy: Muscle metaboreflex activation increases cerebral blood flow, but only when 47 

hyperventilation mediated reductions in the partial pressure of end-tidal carbon dioxide are prevented. 48 

These findings may have implications for individuals practicing exercise training with blood flow 49 

restriction and patient populations in whom exaggerated muscle metaboreflex sensitivity has been 50 

identified. 51 

Key words:  cerebrovascular circulation; exercise; metabolic activation  52 



INTRODUCTION 53 

Increases in cerebral blood flow during exercise are associated with upsurges in brain activation 54 

and metabolism within regions such as the motor-sensory cortex and supplementary motor area (23). 55 

Several other interacting mechanisms also contribute to the cerebral circulatory response accompanying 56 

exercise, including chemical, hemodynamic, autoregulatory and neural factors (42). The stimulation of 57 

group III and IV skeletal muscle afferents has also been implicated in the cerebral blood flow responses 58 

to exercise, but this remains incompletely understood (19, 20, 27). Group III and IV skeletal muscle 59 

afferents are responsive to metabolic (muscle metaboreflex) and mechanical (muscle mechanoreflex) 60 

perturbation. Alongside central command (feedforward signals from higher brain centres) and the 61 

arterial and cardiopulmonary baroreceptors, group III and IV skeletal muscle afferents play a key role in 62 

mediating the cardiovascular adjustments to exercise (18). Early studies established two approaches for 63 

the assessment of the muscle metaboreflex (3, 4, 52). The first approach involved blood flow restriction 64 

(BFR) to the exercising muscles using proximally placed inflatable occlusion cuffs, in order to create a 65 

mismatch between oxygen delivery and demand. This in turn evoked an accelerated accumulation of 66 

exercise-induced metabolites and enhanced activation of the metabolically sensitive skeletal muscle 67 

afferents. The second approach involved the complete circulatory arrest of the exercising skeletal 68 

muscle continuing into the recovery period while the muscle is quiescent (i.e., post-exercise ischemia; 69 

PEI). In this manner, metabolically sensitive skeletal muscle afferents may be activated in isolation by 70 

the trapping of exercise-induced metabolites within the muscle.  71 

During the isolated activation of the muscle metaboreflex with PEI following handgrip, exercise-72 

induced increases in middle cerebral artery (MCA) mean blood velocity (Vm) are not sustained and 73 

MCAVm returns to baseline (28, 46). This is in conflict with reports that the use of local anaesthesia to 74 

block sensory feedback from group III and IV skeletal muscle afferent fibres abolished the normal 75 

increase of MCAVm during static and dynamic handgrip (19, 20, 27). We recently observed that such 76 

contradictory reports may be attributable to muscle metaboreflex mediated increases in ventilation 77 

during PEI, which lead to a confounding reduction in the partial pressure of arterial carbon dioxide 78 

(PaCO2; indexed by the partial pressure of end-tidal carbon dioxide; PETCO2) and a cerebral 79 



vasoconstriction that prevents a muscle metaboreflex mediated increase in MCAVm. Indeed, the 80 

clamping of PETCO2 at baseline values during PEI following fatiguing static handgrip resulted in an 81 

elevation in MCAVm (13). 82 

The aforementioned studies possess limitations with regards to the assessment of cerebral blood 83 

flow and mode of muscle metaboreflex activation that we seek to address in the present investigation. 84 

First, for transcranial Doppler ultrasound measures of MCAVm to be representative of cerebral blood 85 

flow it must be assumed that MCA diameter remains constant. To circumvent this issue, direct measures 86 

of internal carotid artery (ICA) diameter (d), velocity (Vm) and thus ICA blood flow (ICAQ) can be 87 

employed, but to date the contribution of skeletal muscle afferents to the ICAQ responses to exercise 88 

remain unknown. Second, while the cerebral circulatory responses to muscle metaboreflex activation 89 

following exercise with PEI have been investigated, the responses to the enhanced muscle metaboreflex 90 

activation during exercise with BFR have not been considered. During PEI the muscle metaboreflex is 91 

activated in isolation from central command and skeletal muscle mechanoreflex (11, 16, 17). However, 92 

under clinical conditions such as peripheral vascular disease and chronic heart failure, where there is a 93 

hypoperfusion of the skeletal muscles, the muscle metaboreflex is not activated in isolation (7, 9, 24). 94 

Increasing metaboreflex signalling during exercise with BFR at the same time that central command and 95 

mechanoreflex are also activated would potentially provide a more realistic simulation of this paradigm. 96 

Furthermore, exercise with BFR is becoming an increasingly popular athletic training practice due to the 97 

potential for gains in muscle strength and endurance to occur without high-intensity training (54, 60). 98 

Spranger et al. (57) recently raised a ‘call for concern’ regarding the practice of exercise with BFR on 99 

the basis of the exaggerated increases in blood pressure and the associated risk of cardiovascular and 100 

cerebrovascular insult. At present the effects of BFR exercise on cerebral blood flow are unknown.  101 

Given this background, we sought to determine; 1) the influence of the muscle metaboreflex 102 

activation on cerebral blood flow, 2) if changes in PETCO2 are a key determinant of the cerebral blood 103 

flow response to muscle metaboreflex activation, and 3) whether the mode of muscle metaboreflex 104 

activation (i.e., during vs. following exercise) influences the corresponding cerebral blood flow 105 

response. To achieve this MCAVm and ICAQ were measured during exercise with BFR to enhance 106 



muscle metaboreflex activation and during isolated activation of the muscle metaboreflex with PEI. 107 

Trials were conducted where PETCO2 was permitted to fluctuate spontaneously and where PETCO2 was 108 

clamped at baseline values. We hypothesized that muscle metaboreflex activation would evoke an 109 

increase in MCAVm and ICAQ only when PETCO2 was clamped at baseline.  110 



METHODS 111 

 The study was approved by the Health, Safety and Ethics Committee of the School of Sport, 112 

Exercise and Rehabilitation Science at the University of Birmingham and was undertaken according to 113 

Declaration of Helsinki. Eleven male participants were recruited (age 25±4 years; height 180±1 cm; 114 

weight 71±7 kg; mean±SD). After receiving a detailed verbal and written explanation of the 115 

experimental protocol, all participants signed the consent form. All participants were free of any 116 

cardiovascular, respiratory, neurological, renal or metabolic diseases and were not using any 117 

prescription or over-the-counter medication. Abstinence of caffeinate beverages, alcohol or exercise was 118 

requested 24 hours prior to experimental sessions. The room temperature was kept constant at 20-22ºC, 119 

and external stimuli were kept to a minimum.  120 

 121 

Measurements 122 

Heart rate (HR) was monitored using lead II electrocardiogram and blood pressure was measured 123 

beat-to-beat from the middle finger of the right hand (Finometer Pro, Finapres Medical Systems, 124 

Arnhem, The Netherlands). Mean arterial pressure (MAP) was calculated offline by the integration of 125 

the arterial blood pressure waveform over a cardiac cycle. Resting blood pressure was verified by 126 

brachial artery blood pressure measurement made from the left arm using an automated 127 

sphygmomanometer (Tango+, SunTech Medical, USA). ICAVm and ICAd were measured from the left 128 

side of the neck with duplex Doppler ultrasound (Logiq, GE Medical Systems, Milwaukee, USA) using 129 

a 10-MHz multifrequency linear-array transducer with a constant insonation angle of 60º relative to the 130 

skin. ICA measurements were performed 1 to 1.5 cm distal to the carotid bifurcation while the subject’s 131 

chin was slightly elevated. To measure the ICAd the brightness mode was used in a longitudinal section, 132 

the systolic and diastolic diameters were measured over 10 cardiac cycles, the mean diameter was 133 

calculated as: Mean diameter (cm) = [(systolic diameter ×1/3)] + [(diastolic diameter ×2/3)]. The 134 

Doppler velocity spectrum was analyzed using the pulsed wave mode and the time-averaged mean flow 135 

velocity obtained over 10 cardiac cycles. The internal carotid blood flow (ICAQ; ml∙min-1) was 136 



calculated as [ICAVm × π × (diameter/2)2] x 60. ICA conductance (ICACVC; ml∙mim-1∙mmHg-1) was 137 

calculated as ICAQ/ MAP.  138 

MCAVm was measured with a 2 MHz pulse wave transcranial Doppler ultrasound system 139 

(Doppler Box X; Compumedics Germany GmbH, Singen, Germany). The MCA was insonated via the 140 

temporal window above the zygomatic arch on the left side of the head. After finding a satisfactory 141 

signal, the probe was fixed in place with a headband and ultrasonic gel. The MCA vascular conductance 142 

index (MCACVCi) was calculated as MCAVm /MAP.  143 

Participants wore a mouthpiece and nose-clip to permit breath-by-breath determination of minute 144 

ventilation (VE) via a turbine volume transducer (VMM400; Interface Associates, Aliso Viejo, CA, 145 

USA). The end-tidal partial pressures of O2 and CO2 were determined using rapid response gas 146 

analyzers (Moxus Modular; AEI Technologies Inc, Pittsburg, USA). Analog data were digitally 147 

converted at 1 kHz and stored on a PC for offline analysis (Powerlab and LabChart Pro; ADInstruments, 148 

Dunedin, New Zealand). 149 

 150 

Experimental Protocol 151 

An initial familiarization session was first conducted where the participants experienced all the 152 

experimental methods and protocols. The experimental protocol was subsequently conducted over two 153 

laboratory visits separated by 3-7 days with the order of protocol 1 and 2 (day 1 or 2) decided according 154 

to a coin toss. For each protocol, two trials were performed. In one trial, PETCO2 fluctuated normally 155 

while subjects breathed medical grade air, in another trial PETCO2 was clamped at ~1 mmHg above the 156 

resting partial pressure. Trials were counterbalanced and separated by a minimum of 20 min. PETCO2 157 

clamping was undertaken using a dynamic end-tidal forcing system which uses a prediction – correction 158 

system, whereby PETCO2 is controlled at the desired level by altering the composition of the inspired gas 159 

on a breath by breath basis (50). 160 

 161 

 162 

Protocol I: Leg cycling with BFR 163 



After instrumentation participants sat quietly in a semi-recumbent cycle ergometer and 164 

respiration was monitored for 10 min to determine the normal PETCO2. Participants were then instructed 165 

to commence cycling exercise at 60 rpm. During the first ~3 to 5 min the workload was adjusted to 166 

reach a target HR of 120 beats∙min-1 after which ~10 min of steady-state cycling exercise was performed 167 

(Ex1). Following this period, bilateral thigh cuffs were inflated to 130 mmHg (Rapid Cuff Inflation 168 

System E20 AG101, Hokanson, Bellevue, USA) in order to partially restrict blood flow to exercising 169 

muscles and engage the muscle metaboreflex (BFR). The thigh cuffs were deflated after 3 min and a 170 

further 3 min of steady-state cycling exercise was performed under free-flow conditions (Ex2). ICA 171 

assessments were not carried out during Ex2. Ratings of perceived exertion (RPE) were obtained using 172 

the 1-10 Borg scale (12) at the end of the Ex1, BFR, and Ex2 periods. Mean HR, BP, respiratory and 173 

MCAVm data were obtained on a beat-to-beat basis and averages calculated at rest (3 min), Ex1 (last 1 174 

min), BFR (last 1 min) and Ex2 (last 1 min). Ultrasound images for calculation of ICAQ were obtained 175 

during the last 1 min of rest, last 1 min of Ex1 and last 1 min of leg cycling with BFR. Measurements 176 

were then pooled to provide a mean value for each experimental phase. 177 

 178 

 179 

Protocol II: Leg cycling with PEI 180 

As described above, following a 10 min rest period during which the normal PETCO2 was 181 

determined, participants undertook cycling exercise on a semi-recumbent cycle ergometer (60 rpm). 182 

After a ~3-5 min period during which the workload was adjusted in order to reach the reach the target 183 

HR of 120 beats∙min-1 participants undertook steady-state cycling exercise for 10 min (Ex). Fifteen 184 

seconds before the end of the exercise, bilateral thigh cuffs were inflated to 300 mmHg in order to 185 

occlude the blood flow to the exercising muscles and remained inflated for 3 min in order to isolate the 186 

activation of the muscle metaboreflex (PEI). RPE was obtained after 5 min of steady-state cycling 187 

exercise. Mean HR, BP, respiratory and MCAVm data were obtained on a beat-to-beat basis and averages 188 

calculated at rest (3 min), Ex (last 1 min) and PEI (last 1 min). Ultrasound images for calculation of 189 



ICAQ were obtained during last 1 min of rest, last 1 min of Ex and last 1 min of PEI. Measurements 190 

were then pooled to provide a mean value for each experimental phase. 191 

 192 

Data and statistical analysis 193 

Values are reported as means ±SEM. Main effects of experimental phase (Rest, Ex, PEI or Rest, 194 

Ex1, BFR, Ex2), trial (control, PETCO2 clamp) and interaction (phase x trial) were made using two-way 195 

repeated measures ANOVA followed by Student-Newman-Keuls post hoc test. Between trial 196 

comparisons of exercise workload were made using Student t-tests. Statistical significance was set to 197 

p<0.05. Analyses were conducted using SigmaPlot 12.5 (Systat Software Inc, London, UK).198 



RESULTS 199 

Leg cycling with BFR 200 

The exercise workload was not different between trials (control 90±9 W and PETCO2 clamp trial 201 

85±9 W; P>0.05). In the control trial, PETCO2 was slightly increased from rest during leg cycling (Ex1 202 

Δ2.2±0.3 mmHg, P<0.05), decreased with BFR (Δ-4.8±0.9 mmHg, P<0.05), and returned to resting 203 

values upon the cessation of BFR (Ex2 Δ0.8±0.5 mmHg, P>0.05 vs. Rest; Figure 1). By design, in the 204 

clamp trial PETCO2 remained unchanged from the rest throughout all experimental phases. Leg cycling 205 

evoked similar increases in MCAVm during the control and PETCO2 clamp trials (P<0.05 Rest vs. Ex1; 206 

Figure 1). In the control trial, no change in MCAVm was observed during exercise with BFR, whereas in 207 

the PETCO2 clamp trial MCAVm was increased (P<0.05 vs. Rest, Ex1, and between conditions). In both 208 

trials, MCAVm was not different during leg cycling before and after BFR (P>0.05 Ex1 vs. Ex2). 209 

MCACVCi was unchanged from rest during leg cycling (P>0.05, Ex1 vs. Rest, Ex2 vs. Rest), but was 210 

decreased with BFR (P<0.05 vs. Rest and Ex1; Table 1). The magnitude of this decrease was greater in 211 

the control trial than in the PETCO2 clamp trial. ICAQ was unchanged from rest to leg cycling (Ex1) in 212 

both trials, but was increased with BFR in the PETCO2 clamp trial (P<0.05 vs. Rest and between trials; 213 

Figure 1), secondary to an increase in ICAVm. ICAd was unchanged throughout all experimental phases 214 

in both trials (Table 1). ICACVC was not different between trials and was similarly decreased from rest 215 

during leg cycling (P<0.05 Rest vs. Ex1) then further decreased during leg cycling with BFR (P<0.05 216 

Ex1 vs. Rest) in both trials.  217 

HR was not different between the control and PETCO2 clamp trials at any experimental phase 218 

(Table 1). MAP was slightly, but higher in the PETCO2 clamp trial (Figure 1). Leg cycling evoked 219 

increases in MAP, HR in both trials (P<0.05 Ex1 vs. Rest), which were further increased during BFR 220 

(P<0.05 vs. Ex1). During leg cycling following BFR, MAP and HR returned to values observed during 221 

leg cycling prior to BFR (Ex1 vs. Ex2, P>0.05). RPE was not different between the control trial [Ex1 222 

median, 4 (interquartile range, 4-5), BFR, 8 (7-8) and Ex2 5 (4-6); P<0.05] and the PETCO2 clamp trial 223 

[Ex1 4 (3-6), BFR 8, (7-8), Ex2 5 (4-7); P<0.05] (Wilcoxon signed-rank test). 224 

 225 



Leg cycling with PEI 226 

 Exercise workload was not different between trials (control 89± 9 W and PETCO2 clamp trial 227 

89±9 W; P>0.05). In the control trial, PETCO2 was unchanged from rest during leg cycling and 228 

decreased with PEI (Δ-7±1 mmHg, P<0.05; Figure 2), but by design, in the PETCO2 clamp trial it 229 

remained not different from rest throughout all experimental phases. In both the control and PETCO2 230 

clamp trials, MCAVm increased from rest during leg cycling (P≤0.05; Figure 2). During PEI, in the 231 

control trial MCAVm was not different from rest (P>0.05), whereas in the PETCO2 clamp trial MCAVm 232 

remained elevated (P<0.05 vs. rest and between trials). In the control trial, MCACVCi was not different 233 

from rest during leg cycling and was decreased from rest during PEI (P<0.05 vs. Rest and between 234 

trials; Table 2). MCACVCi was not different from rest throughout PETCO2 clamp trial (P>0.05; Table 2). 235 

ICAQ was not different from rest during leg cycling in both control and PETCO2 clamp trials (P>0.05; 236 

Figure 2). However, during PEI, ICAQ was higher in the PETCO2 clamp trial than in the control trial 237 

(P<0.05; Figure 2). ICAd was not different throughout all experimental phases in both trials (Table 2). 238 

ICACVC was greater in the PETCO2 clamp trial, but decreased similarly from rest during leg cycling 239 

(P<0.05 vs. Rest) in both trials. During PEI, ICACVC remained at levels sustained during exercise 240 

(P<0.05 vs. Rest, P>0.05 vs. Ex) in both trials. MAP and HR (Table 2; Figure 2) were not different 241 

between the control and PETCO2 clamp trials at any experimental phase. Leg cycling evoked increases in 242 

MAP and HR in both trials (P<0.05 vs. rest). In both trials, MAP was further increased with PEI from 243 

the level observed during leg cycling (P<0.05 vs. Rest and Ex), whereas HR fell, but remained above 244 

resting levels (P<0.05 vs. Rest and Ex).  245 

RPE were not different during leg cycling in the control [median, 5 (interquartile range, 4-7) and the 246 

PETCO2 clamp trials [5 (4-6)] (Wilcoxon signed-rank test).  247 



DISCUSSION 248 

The major novel finding of this study is that the muscle metaboreflex failed to elevate either 249 

MCAVm or ICAQ, when engaged by leg cycling with BFR or isolated during PEI following leg cycling 250 

under control conditions. However, a significant reduction in PETCO2, secondary to an increase in VE, 251 

was induced by muscle metaboreflex activation with either BFR or PEI. Accordingly, when PETCO2 was 252 

clamped at resting levels muscle metaboreflex-mediated increases in MCAVm and ICAQ were revealed 253 

during both BFR and PEI. Thus, in accordance with our original hypothesis, these findings demonstrate 254 

that when hyperventilation-related decreases in PETCO2 are prevented the muscle metaboreflex increases 255 

cerebral blood flow, and this occurs irrespective of the mode of muscle metaboreflex activation. 256 

A potential explanation why exercise with BFR, or indeed PEI, does not increase cerebral 257 

perfusion may be that the activation of metabolically sensitive skeletal muscle afferents evokes an 258 

increase in ventilation (5), which leads to a confounding reduction in PaCO2 (indexed by PETCO2). The 259 

contribution of group III and IV skeletal muscle afferents to the control of breathing remains 260 

controversial, nevertheless in agreement with several previous reports we observed an increase in VE 261 

during muscle metaboreflex activation (1, 13, 15, 44) and a reduction in PETCO2. CO2 is a powerful 262 

dilator of the cerebral vasculature (31) and decreases in PaCO2 lead to cerebral vasoconstriction (2). In 263 

the present study, the clamping of PETCO2 at resting levels unmasked a muscle metaboreflex-mediated 264 

increase in MCAVm and ICAQ during leg cycling with BFR and during PEI following leg cycling. 265 

Furthermore, the degree of cerebral vasoconstriction (i.e., the magnitude of the reduction in MCACVCi) 266 

during PEI and exercise with BFR was attenuated in the PETCO2 clamp trial, although a similar effect 267 

was not observed for ICACVC. These observations are in concordance with our earlier report that PEI 268 

following fatiguing ischemic handgrip exercise only increases MCAVm when PETCO2 is clamped at 269 

resting levels (13). Such observations may help to explain why others have not shown MCAVm to be 270 

elevated during PEI. Indeed, Jorgensen et al., (28) also reported that PaCO2 was decreased below resting 271 

levels during PEI following cycling exercise. In agreement with Friedman et al., (19, 20) and Jorgensen 272 

et al., (29), who demonstrated that pharmacological blockade of sensory feedback from skeletal muscle 273 

afferents diminished the increase in cerebral perfusion during exercise, the results of the present study 274 



support a role for the muscle metaboreflex in the regulation of cerebral blood flow during exercise. This 275 

may be attributable to the pairing of local neuronal activation and perfusion (i.e., neural-vascular 276 

coupling), that is to say cerebral flow increases in order to increase O2 delivery in accordance with 277 

increased metabolic. Studies employing advanced imaging techniques have shown that isolated 278 

metaboreflex stimulation (PEI) evokes increased activity in discrete brain regions (e.g., medial and 279 

lateral dorsal medulla, contralateral insula, primary and secondary somatosensory cortex) (53). It is 280 

acknowledged that part of the cerebrovascular responses to PEI arises on account of the discomfort 281 

associated with this manoeuvre (35). In the present study we are not able to quantify the contribution of 282 

local discomfort to the cerebrovascular responses to PEI and BFR, but note that without the clamping of 283 

PETCO2 at resting levels no changes in cerebral perfusion were observed. As such, the combination of 284 

PETCO2 clamping and brain imaging modalities may provide additional insights into the effects of 285 

muscle metaboreflex activation on regional brain activation. The influence of exercise-induced increases 286 

of MAP on cerebral blood flow is somewhat controversial. The observation that during PEI, MCAVm 287 

remains at resting levels while MAP is elevated is part of the reason why the direct influence of blood 288 

pressure on the exercise-induced increase of cerebral perfusion has on occasion been discounted (26, 47, 289 

55). However, when considering the effects of MAP on cerebral perfusion during exercise the 290 

potentially confounding effects of changes in PETCO2 should be considered. With PaCO2 controlled, 291 

MCAVm changes by ~0.8% per mmHg change in MAP within the so called “autoregulatory range” (34). 292 

We observed that, BFR evoked a 44 mmHg increase from rest in MAP and a 26% increase in MCAVm, 293 

while during PEI, MAP was elevated by 29 mmHg and MCAVm elevated by 17%. As such, increases in 294 

MAP may reasonably be expected to contribute, at least in part, for the observed increase in cerebral 295 

blood flow. The ventilatory response to leg cycling with BFR was enhanced when PETCO2 was clamped. 296 

As neither the exercise workload nor the thigh cuff pressure were different between conditions, it is 297 

unlikely that this is attributable to a difference in the degree of muscle afferent activation within the 298 

active skeletal muscles. However, in the absence of a direct assessment of local metabolites this 299 

possibility cannot be excluded. Alternatively, the clamping of PETCO2 may have eliminated part of the 300 

chemoreflex-mediated inhibition of the ventilatory response. It is possible that the greater ventilatory 301 



response to exercise observed when PETCO2 was clamped, could evoke a respiratory muscle 302 

metaboreflex and augment the concomitant blood pressure response (51). However, an exaggerated 303 

increase in blood pressure did not accompany the greater ventilatory response to exercise with BFR in 304 

the clamp trial. 305 

The present study extends earlier reports examining the contribution of skeletal muscle afferents 306 

to cerebral blood flow regulation in two important ways. Rather than relying on transcranial Doppler 307 

ultrasound measures of MCAVm to estimate cerebral perfusion, we have used duplex Doppler ultrasound 308 

measures of cerebral blood flow (ICAQ). In order that transcranial Doppler ultrasound measures of 309 

MCAVm are representative of cerebral blood flow, it must be assumed that MCAd remains constant. As 310 

such, this is the first study to determine the influence of the muscle metaboreflex activation on cerebral 311 

blood flow in humans. In addition to use of PEI to assess the effect of isolated skeletal muscle 312 

metaboreflex activation on cerebral blood flow, exercise with BFR was undertaken. As indicated above, 313 

this has applied relevance to those undertaking such practices to induce athletic enhancements, but also 314 

patient populations in whom muscle metaboreflex activation may be heightened during exercise as a 315 

consequence of skeletal muscle under-perfusion (e.g., chronic heart failure, peripheral vascular disease). 316 

Despite exercise with BFR and PEI evoking similar reductions from rest in PETCO2 (Δ-2.6 and Δ-5.0 317 

mmHg for BFR and PEI, respectively), MCAVm was significantly elevated from rest during exercise 318 

with BFR such that it was similar to that observed during free-flow exercise, whereas MCAVm was not 319 

different from rest during PEI. Such findings may be explained by a greater elevations in cardiac output 320 

and the concomitant activation of central command during exercise with BFR compared to PEI (36). 321 

Nevertheless, independent of the mode of muscle metaboreflex activation, when muscle metaboreflex 322 

mediated reductions in PETCO2 were prevented increases in cerebral blood flow were observed.  323 

Regular exercise with BFR (e.g., Kaatsu training) has been reported to enhance cardiorespiratory 324 

fitness (60) and skeletal muscle mass in healthy young and older individuals (32, 33, 63, 64), and 325 

patients (56). It is believed that exercise training with BFR exaggerates the normal accumulation of 326 

metabolites within the active skeletal muscle, thus promoting muscle growth and force generating 327 

capacity without the need for high-intensity training (21, 22, 43, 62). In a recent article, Spranger et al., 328 



(57) raised a ‘call for concern’ about this practice on the basis that it engages the muscle metaboreflex, 329 

which is known to powerfully increase sympathetic nerve activity to the heart and peripheral vasculature 330 

and can inhibit cardiac parasympathetic activity (18). As a consequence of these autonomic alterations, 331 

exercise with BFR evokes pronounced increases in peripheral vascular resistance, cardiac output and 332 

blood pressure (59). This could be of particular concern to patients in whom exaggerated skeletal 333 

muscle afferent sensitivity has been identified (e.g., hypertension, chronic heart failure, chronic 334 

obstructive pulmonary disease, type 2 diabetes) (7, 9, 24, 25, 45) and could raise the risk of 335 

cardiovascular and cerebrovascular events (57). Indeed, in the present study of healthy individuals, 336 

exercise with BFR raised MAP by ~27 mmHg and heart rate by ~22 beats∙min-1 from levels established 337 

during a preceding period of leg cycling under free-flow conditions. However, despite such 338 

hemodynamic alterations cerebral perfusion was unchanged during exercise with BFR, thus calling into 339 

question the contention that exercise with BFR may increase the risk of cerebrovascular injury as a 340 

consequence of a large local hyperaemic response. In fact we observed that exercise with BFR evoked a 341 

lower than expected cerebral blood flow, on account of the coincident hyperventilation and hypocapnia 342 

linked cerebral vasoconstriction. During high intensity dynamic exercise, particularly when combined 343 

with hypoxia, a reduced cerebral oxygenation has been postulated as a fatigue mechanism (8, 40, 55). 344 

As such, in patients who exhibit exaggerated skeletal muscle afferent feedback and an excessive 345 

hyperventilatory response to exercise (e.g., chronic heart failure, congestive obstructive pulmonary 346 

disease) (7, 9, 58), the associated reduction in PaCO2 and cerebral vasoconstriction may precipitate 347 

exercise intolerance via a central mechanism (41, 48). Future studies utilizing arterial-internal jugular 348 

venous blood sampling are required, particularly in chronic disease populations, to better understand 349 

how cerebral metabolism (e.g., O2 delivery, cerebral metabolic rate for O2, fractional O2 extraction) is 350 

affected by the activation of skeletal muscle afferents while PETCO2 is clamped at baseline levels. 351 

There are several limitations on the present study, PETCO2 was used as a surrogate for PaCO2, 352 

although during exercise PETCO2 could have overestimated PaCO2 (49) there is a strong correlation 353 

between PETCO2 and PaCO2 across all levels of physiologic dead space (37). We used external thigh 354 

cuffs to decrease/occlude blood flow to the legs, although no direct measures of the leg blood flow or 355 



local metabolite concentrations were possible, we observed marked increases in MAP during this 356 

manoeuvre indicative of muscle metaboreflex activation, which strongly suggest that reductions in 357 

blood flow were successfully induced. BFR may have increased in central command, which could have 358 

contributed to the increase of cerebral blood flow (6). Indeed, increases in RPE, historically related to 359 

central command (38, 39), were noted during leg cycling with BFR. Human studies are needed in which 360 

the cardiovascular and cerebrovascular responses to the application of BFR during leg cycling are 361 

evaluated before and after pharmacological inhibition of feedback from group III and IV skeletal muscle 362 

afferents (e.g., intrathecal fentanyl) in order to test the contribution of central command to this 363 

manoeuvre. Automated edge-tracking software was not used in the present study and this may be a 364 

limitation (61), although intraclass correlations between repeated rest and exercise measures made 365 

during a study visit were high (i.e., >0.8). Finally, we have only evaluated the effect of skeletal muscle 366 

afferent feedback with BFR during moderate cycling exercise, and care should be taken when directly 367 

extrapolating our findings to other exercise intensities and modalities. This is important in light of the 368 

concept that athletes may utilise BFR training in order to try to obtain a desirable training effects but at a 369 

lower exercise intensity (21, 22, 43, 62). 370 

In conclusion, the findings of the present study indicate that only when hyperventilation-related 371 

decreases in PETCO2 are prevented does the activation of metabolically sensitive skeletal muscle afferent 372 

fibres evoke an increase in cerebral blood flow, irrespective of the mode of activation (i.e. during or 373 

following Ex). 374 
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FIGURE LEGENDS 558 

Figure 1. Cardiorespiratory and cerebrovascular responses to leg cycling under free-flow 559 

conditions (Ex1, Ex2) and with blood flow restriction (BFR). Partial pressure of end-tidal carbon 560 

dioxide (PETCO2); middle cerebral artery blood velocity (MCAVm); internal carotid artery blood flow 561 

(ICAQ); mean arterial pressure (MAP). Ex, exercise; BFR, blood flow restriction. Values are 562 

mean±SEM. * P<0.05 vs. rest, †P<0.05 vs. Ex1, ‡P<0.05 vs. control. 563 

 564 

Figure 2. Cardiorespiratory and cerebrovascular responses to leg cycling and post-exercise 565 

ischemia (PEI). Partial pressure of end-tidal carbon dioxide (PETCO2); middle cerebral artery blood 566 

velocity (MCAVm); internal carotid artery blood flow (ICAQ); mean arterial pressure (MAP). Ex, 567 

exercise; PEI, post exercise ischemia. Values are mean±SEM. * P<0.05 vs. rest, †P<0.05 vs. Ex, 568 

‡P<0.05 vs. control. 569 



Table 1. Cardiorespiratory and cerebrovascular responses to leg cycling under free-flow conditions (Ex1, Ex2) and with blood flow restriction 0 

(BFR) 1 

  Experimental Phase  P value 

  Rest Ex1 BFR Ex2  Phase Condition Interaction 

VE (l∙min-1)                

Control  9 ± 1 35 ± 2* 45 ± 3*† 39 ± 2*  
<0.001 0.002 0.002 

PETCO2 Clamp  11 ± 2 37 ± 3* 56 ± 4*†‡ 46 ± 3*†‡  

MCACVCi  (cm∙s-1∙mmHg-1)                

Control  0.66 ± 0.06 0.65 ± 0.05 0.49 ± 0.03*† 0.66 ± 0.06  
<0.001 0.927 0.026 

PETCO2 Clamp  0.67 ± 0.06 0.63 ± 0.04 0.54 ± 0.04*†‡ 0.63 ± 0.06  

ICAVm (cm∙s-1)                

Control  28 ± 1 28 ± 1 26 ± 1     
0.573 0.007 0.003 

PETCO2 Clamp  28 ± 1 29 ± 2* 31 ± 1*†‡     

ICAd (cm)                

Control  0.46 ± 0.01 0.45 ± 0.01 0.45 ± 0.01     
0.467 0.486 0.213 

PETCO2 Clamp  0.45 ± 0.01 0.45 ± 0.01 0.46 ± 0.01     

ICACVC (ml∙min-1∙mmHg-1)                



Control  3.3 ± 0.2 2.9 ± 0.2 2.0 ± 0.1     
<0.001 0.321 0.108 

PETCO2 Clamp  3.2 ± 0.2 2.8 ± 0.2 2.4 ± 0.1     

SBP (mmHg)                

Control  117 ± 2 153 ± 7 191 ± 8 146 ± 7  
<0.001 0.611 0.402 

PETCO2 Clamp  115 ± 3 153 ± 5 195 ± 6 146 ± 6  

DBP (mmHg)                

Control  67 ± 3 72 ± 3 96 ± 3 75 ± 4  
<0.001 <0.001 0.522 

PETCO2 Clamp  70 ± 2 79 ± 3 101 ± 5 80 ± 3  

HR (beats∙min-1)                

Control  64 ± 3 122 ± 1 144 ± 3 124 ± 2  
<0.001 0.450 0.760 

PETCO2 Clamp  65 ± 3 121 ± 1 145 ± 2 125 ± 2  

Values are mean±SEM. VE, ventilation; MCACVCi, middle cerebral artery conductance; ICAVm, internal carotid artery mean velocity; ICAd, 2 

internal carotid artery diameter; ICACVC, internal carotid artery conductance; SBP, systolic blood pressure; MAP, mean arterial pressure; HR, 3 

heart rate; Ex, exercise; BFR, blood flow restriction. Values are mean ± SEM. * P<0.05 vs. Rest, †P<0.05 vs. Ex1, ‡P<0.05 vs. Control. 4 
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Table 2. Cardiorespiratory and cerebrovascular responses to leg cycling and post-exercise ischemia (PEI) 7 

  Experimental Phase  P value 

  Rest Ex PEI  Phase Condition Interaction 

VE (l∙min-1)            

Control  9 ± 1 40 ± 2* 16 ± 3†  
<0.001 0.011 0.001 

PETCO2 Clamp  13 ± 1 40 ± 3* 25 ± 3*†‡  

MCACVCi (cm∙s-1∙mmHg-1)            

Control  0.60 ± 0.05 0.55 ± 0.03 0.43 ± 0.03*†  
0.001 0.004 0.031 

PETCO2 Clamp  0.64 ± 0.04 0.59 ± 0.04 0.56 ± 0.04‡  

ICAVm (cm∙s-1)              

Control  25 ± 1 26 ± 1 23 ± 2  
0.735 <0.001 0.019 

PETCO2 Clamp  27 ± 1 28 ± 1 29 ± 2‡  

ICAd (cm)            

Control  0.45 ± 0.01 0.45 ± 0.01 0.45 ± 0.01  
0.306 0.572 0.784 

PETCO2 Clamp  0.46 ± 0.01 0.45 ± 0.01 0.45 ± 0.01  

ICACVC (ml∙min-1∙mmHg-1)            

Control  2.8 ± 0.2 2.4 ± 0.2 1.9 ± 0.2  <0.001 <0.001 0.122 



PETCO2 Clamp  3.1 ± 0.2 2.6 ± 0.1 2.5 ± 0.2     

SBP (mmHg)            

Control  118 ± 4 155 ± 7 145 ± 7  
<0.001 0.729 0.469 

PETCO2 Clamp  116 ± 4 159 ± 9 148 ± 8  

DBP (mmHg)            

Control  72 ± 3 83 ± 4 98 ± 5  
<0.001 0.157 0.932 

PETCO2 Clamp  69 ± 2 80 ± 3 94 ± 3  

HR (beats∙min-1)               

Control  61 ± 3 121 ± 2 95 ± 5  
<0.001 0.764 0.416 

PETCO2 Clamp  63 ± 3 123 ± 1 93 ± 3  

Values are mean±SEM. VE, ventilation; MCACVC, middle cerebral artery conductance; ICAVm, internal carotid artery mean velocity; 8 

ICAd, internal carotid artery diameter; ICACVCi, internal carotid artery conductance; SBP, systolic blood pressure; MAP, mean arterial 9 

pressure; HR, heart rate; Ex, exercise; PEI, post exercise ischemia. Values are mean ± SEM. * P<0.05 vs. Rest, †P<0.05 vs. Ex, 0 

‡P<0.05 vs. Control. 1 
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