12 research outputs found

    Structural Measures for Network Biology Using QuACN

    Get PDF
    Background: Structural measures for networks have been extensively developed, but many of them have not yet demonstrated their sustainably. That means, it remains often unclear whether a particular measure is useful and feasible to solve a particular problem in network biology. Exemplarily, the classification of complex biological networks can be named, for which structural measures are used leading to a minimal classification error. Hence, there is a strong need to provide freely available software packages to calculate and demonstrate the appropriate usage of structural graph measures in network biology. Results: Here, we discuss topological network descriptors that are implemented in the R-package QuACN and demonstrate their behavior and characteristics by applying them to a set of example graphs. Moreover, we show a representative application to illustrate their capabilities for classifying biological networks. In particular, we infer gene regulatory networks from microarray data and classify them by methods provided by QuACN. Note that QuACN is the first freely available software written in R containing a large number of structural graph measures. Conclusion: The R package QuACN is under ongoing development and we add promising groups of topological network descriptors continuously. The package can be used to answer intriguing research questions in network biology, e.g., classifying biological data or identifying meaningful biological features, by analyzing the topology o

    [COMMODE] a large-scale database of molecular descriptors using compounds from PubChem

    Get PDF
    BACKGROUND: Molecular descriptors have been extensively used in the field of structure-oriented drug design and structural chemistry. They have been applied in QSPR and QSAR models to predict ADME-Tox properties, which specify essential features for drugs. Molecular descriptors capture chemical and structural information, but investigating their interpretation and meaning remains very challenging. RESULTS: This paper introduces a large-scale database of molecular descriptors called COMMODE containing more than 25 million compounds originated from PubChem. About 2500 DRAGON-descriptors have been calculated for all compounds and integrated into this database, which is accessible through a web interface at http://commode.i-med.ac.at

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
    corecore