18 research outputs found

    Implication d'AIF dans la mort cellulaire et la physiologie mitochondriale : exemples dans la nécroptose intrinsèque et l'hématopoïèse

    No full text
    AIF is one of the cell death effectors released from mitochondria but it also possess a vital role by regulating the cellular respiration. Throughout this thesis work, I have focused my studies on these two functions. On one hand, I have performed a deeper characterization of the DNA alkylating agent induced regulated necrosis. I have identified RIP1 as a crucial determinant of this cell death pathway, hence linking it to necroptosis. I have also highlighted the role of BID, a BH3-only member of the BCL-2 family, in the mitochondrial release of AIF. I have shown that calpains proteases cleave BID into tBID which relocalize to mitochondria where it helps activating the pro-apoptotic factor BAX. This study contributes to reconsider the role of BH3-only proteins in cell death pathways beyond apoptosis. On the other hand, I have studied AIF role in hematopoiesis thanks to a mouse model with hematopoietic lineage-specific deletion of AIF. I have observed a block in T-cell development and the rapid development of severe pancytopenia. I have demonstrated that this pancytopenia is associated with the loss of hematopoietic stem cells whom capacities were tested both ex vivo and in vivo. In order to understand the underlying determinants of these defects, I have characterized the cellular consequences related to AIF deletion : loss of the respiratory chain complex I, decrease of the oxidative phosphorylation capacity, decreased levels of ATP, increased levels of reactive oxygen species. This second study reveals the importance of a proper oxidative phosphorylation system combined with healthy mitochondria for a normal hematopoiesis and hematopoietic stem cells maintenance.AIF fait partie des protéines mitochondriales inductrices de mort mais possède aussi un rôle vital nécessaire à la respiration cellulaire. Les recherches menées lors de cette thèse portent sur ces deux fonctions. D'une part, j'ai approfondi l'étude de la nécrose régulée induite par un agent alkylant de l'ADN. J'ai découvert l'importance de RIP1 dans cette voie de mort cellulaire et ainsi conduit à la définir comme nécroptose. J'ai aussi mis en évidence le rôle de BID, BH3-only de la famille BCL-2, dans la libération d'AIF des mitochondries. J'ai montré que les protéases calpaïnes clivaient BID permettant à sa forme tronquée de relocaliser aux mitochondries et d'y activer le facteur pro-apoptotique BAX. Cette étude contribue à replacer le rôle des BH3-only dans des voies de mort cellulaire au delà de l'apoptose. D'autre part, j'ai étudié le rôle d'AIF dans l'hématopoïèse grâce à un modèle murin invalidé pour AIF dans ce système. J'ai observé un blocage de différenciation thymique et le développement d'une pancytopénie sévère. J'ai démontré que cette dernière est associée à la perte des cellules souches hématopoïétiques dont j'ai testé les capacités ex vivo et in vivo. Pour comprendre les raisons de ce défaut, j'ai caractérisé les conséquences associées à la perte d'AIF : perte du complexe I de la chaine respiratoire, diminution d'activité de phosphorylation oxydative, diminution de la production d'ATP, augmentation des espèces réactives de l'oxygène. Cette deuxième étude démontre l'importance d'une phosphorylation oxydative fonctionnelle et de mitochondries saines pour une hématopoïèse normale et particulièrement pour le maintien des cellules souches hématopoïétiques

    Implication of AIF in cell death and mitochondrial physiology : cases of intrinsic necroptosis and hematopoiesis

    No full text
    AIF fait partie des protéines mitochondriales inductrices de mort mais possède aussi un rôle vital nécessaire à la respiration cellulaire. Les recherches menées lors de cette thèse portent sur ces deux fonctions. D'une part, j'ai approfondi l'étude de la nécrose régulée induite par un agent alkylant de l'ADN. J'ai découvert l'importance de RIP1 dans cette voie de mort cellulaire et ainsi conduit à la définir comme nécroptose. J'ai aussi mis en évidence le rôle de BID, BH3-only de la famille BCL-2, dans la libération d'AIF des mitochondries. J'ai montré que les protéases calpaïnes clivaient BID permettant à sa forme tronquée de relocaliser aux mitochondries et d'y activer le facteur pro-apoptotique BAX. Cette étude contribue à replacer le rôle des BH3-only dans des voies de mort cellulaire au delà de l'apoptose. D'autre part, j'ai étudié le rôle d'AIF dans l'hématopoïèse grâce à un modèle murin invalidé pour AIF dans ce système. J'ai observé un blocage de différenciation thymique et le développement d'une pancytopénie sévère. J'ai démontré que cette dernière est associée à la perte des cellules souches hématopoïétiques dont j'ai testé les capacités ex vivo et in vivo. Pour comprendre les raisons de ce défaut, j'ai caractérisé les conséquences associées à la perte d'AIF : perte du complexe I de la chaine respiratoire, diminution d'activité de phosphorylation oxydative, diminution de la production d'ATP, augmentation des espèces réactives de l'oxygène. Cette deuxième étude démontre l'importance d'une phosphorylation oxydative fonctionnelle et de mitochondries saines pour une hématopoïèse normale et particulièrement pour le maintien des cellules souches hématopoïétiques.AIF is one of the cell death effectors released from mitochondria but it also possess a vital role by regulating the cellular respiration. Throughout this thesis work, I have focused my studies on these two functions. On one hand, I have performed a deeper characterization of the DNA alkylating agent induced regulated necrosis. I have identified RIP1 as a crucial determinant of this cell death pathway, hence linking it to necroptosis. I have also highlighted the role of BID, a BH3-only member of the BCL-2 family, in the mitochondrial release of AIF. I have shown that calpains proteases cleave BID into tBID which relocalize to mitochondria where it helps activating the pro-apoptotic factor BAX. This study contributes to reconsider the role of BH3-only proteins in cell death pathways beyond apoptosis. On the other hand, I have studied AIF role in hematopoiesis thanks to a mouse model with hematopoietic lineage-specific deletion of AIF. I have observed a block in T-cell development and the rapid development of severe pancytopenia. I have demonstrated that this pancytopenia is associated with the loss of hematopoietic stem cells whom capacities were tested both ex vivo and in vivo. In order to understand the underlying determinants of these defects, I have characterized the cellular consequences related to AIF deletion : loss of the respiratory chain complex I, decrease of the oxidative phosphorylation capacity, decreased levels of ATP, increased levels of reactive oxygen species. This second study reveals the importance of a proper oxidative phosphorylation system combined with healthy mitochondria for a normal hematopoiesis and hematopoietic stem cells maintenance

    La mort cellulaire programmée ne manque pas de vocabulaire

    No full text
    Le terme apoptose est aujourd’hui le premier mot qui vient à l’esprit d’un scientifique à qui l’on parle de suicide programmé des cellules. Pourtant, l’apoptose dite classique ne constitue pas le seul programme de mort cellulaire, et de nombreuses voies dites alternatives ou même atypiques sont désormais connues. Plus qu’alternatives, ce sont parfois des voies de signalisation préférées à l’apoptose en raison du type cellulaire et/ou du contexte environnemental dans lequel se trouve la cellule (tissu, stade de développement, etc.). Dans cette revue, nous décrivons différents types de mort cellulaire programmée dont la littérature fait état à ce jour. Entre anoïkis, pyroptosis, necroptosis ou ferroptosis, vous allez découvrir que la mort cellulaire programmée ne manque pas de vocabulaire 

    A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells

    No full text
    The Rb/E2F complex represses S-phase genes both in cycling cells and in cells that have permanently exited from the cell cycle and entered a terminal differentiation pathway. Here we show that S-phase gene repression, which involves histone-modifying enzymes, occurs through distinct mechanisms in these two situations. We used chromatin immunoprecipitation to show that methylation of histone H3 lysine 9 (H3K9) occurs at several Rb/E2F target promoters in differentiating cells but not in cycling cells. Furthermore, phenotypic knock-down experiments using siRNAs showed that the histone methyltransferase Suv39h is required for histone H3K9 methylation and subsequent repression of S-phase gene promoters in differentiating cells, but not in cycling cells. These results indicate that the E2F target gene permanent silencing mechanism that is triggered upon terminal differentiation is distinct from the transient repression mechanism in cycling cells. Finally, Suv39h-depleted myoblasts were unable to express early or late muscle differentiation markers. Thus, appropriately timed H3K9 methylation by Suv39h seems to be part of the control switch for exiting the cell cycle and entering differentiation

    The extensive intergenerational molecular effects of ocean acidification on the olfactory epithelium transcriptome of a marine fish are associated with a better viral resistance

    No full text
    Background Progressive climate-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance internal acid-base homeostasis efficiently, indirect ionic regulation effects that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes of ecological and commercial importance is not yet understood. Farmed fish are highly susceptible to disease outbreak yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted CO2 levels (IPCC RCP8.5), with parents being exposed for four years and their offspring for two years. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F1 offspring) and a viral challenge (exposing F1 offspring to betanodavirus) where we assessed survival rates. Results We discovered long-term intergenerational molecular trade-offs in both sensory and immune systems. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from two-year-old F1 offspring revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected extensive OA-induced intergenerational up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. In addition, intergenerational exposure to OA induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F1 fish challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. Conclusion F1 exposed to OA-intergenerational acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently altered. Our results reveal that trade-offs in adaptive plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed fish, suggesting that intergenerational plasticity propagate with progressive exposure to OA and will have important consequences for how cultured and wild fish interacts with its environment

    CD47Low status on CD4 effectors is necessary for the contraction/resolution of the immune response in humans and mice

    Get PDF
    How do effector CD4 T cells escape cell death during the contraction of the immune response (IR) remain largely unknown. CD47, through interactions with thrombospondin-1 (TSP-1) and SIRP-α, is implicated in cell death and phagocytosis of malignant cells. Here, we reported a reduction in SIRP-α-Fc binding to effector memory T cells (TEM) and in vitro TCR-activated human CD4 T cells that was linked to TSP-1/CD47-induced cell death. The reduced SIRP-α-Fc binding (CD47low status) was not detected when CD4 T cells were stained with two anti-CD47 mAbs, which recognize distinct epitopes. In contrast, increased SIRP-α-Fc binding (CD47high status) marked central memory T cells (TCM) as well as activated CD4 T cells exposed to IL-2, and correlated with resistance to TSP-1/CD47-mediated killing. Auto-aggressive CD4 effectors, which accumulated in lymph nodes and at mucosal sites of patients with Crohn's disease, displayed a CD47high status despite a high level of TSP-1 release in colonic tissues. In mice, CD47 (CD47low status) was required on antigen (Ag)-specific CD4 effectors for the contraction of the IR in vivo, as significantly lower numbers of Ag-specific CD47+/+CD4 T cells were recovered when compared to Ag-specific CD47-/- CD4 T cells. In conclusion, we demonstrate that a transient change in the status of CD47, i.e. from CD47high to CD47low, on CD4 effectors regulates the decision-making process that leads to CD47-mediated cell death and contraction of the IR while maintenance of a CD47high status on tissue-destructive CD4 effectors prevents the resolution of the inflammatory response. © 2012 Van et al.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Structural Insights into the Coenzyme Mediated Monomer–Dimer Transition of the Pro-Apoptotic Apoptosis Inducing Factor

    No full text
    The apoptosis-inducing factor (AIF) is a mitochondrial-flavoprotein that, after cell death induction, is distributed to the nucleus to mediate chromatinolysis. In mitochondria, AIF is present in a monomer–dimer equilibrium that after reduction by NADH gets displaced toward the dimer. The crystal structure of the human AIF (hAIF):NAD­(H)-bound dimer revealed one FAD and, unexpectedly, two NAD­(H) molecules per protomer. A 1:2 hAIF:NAD­(H) binding stoichiometry was additionally confirmed in solution by using surface plasmon resonance. The here newly discovered NAD­(H)-binding site includes residues mutated in human disorders, and accommodation of the coenzyme in it requires restructuring of a hAIF portion within the 509–560 apoptogenic segment. Disruption of interactions at the dimerization surface by production of the hAIF E413A/R422A/R430A mutant resulted in a nondimerizable variant considerably less efficiently stabilizing charge-transfer complexes upon coenzyme reduction than WT hAIF. These data reveal that the coenzyme-mediated monomer–dimer transition of hAIF modulates the conformation of its C-terminal proapoptotic domain, as well as its mechanism as reductase. These observations suggest that both the mitochondrial and apoptotic functions of hAIF are interconnected and coenzyme controlled: a key information in the understanding of the physiological role of AIF in the cellular life and death cycle

    Mitochondrial AIF Loss Causes Metabolic Reprogramming, Caspase-Independent Cell Death Blockade, Embryonic Lethality, and Perinatal Hydrocephalus

    Get PDF
    International audienceObjectives: Apoptosis-Inducing Factor (AIF) is a protein involved in mitochondrial electron transport chain assembly/stability and in programmed cell death. The relevant role of this protein is underlined by the fact that mutations altering mitochondrial AIF properties result in acute pediatric mitochondriopathies and tumor metastasis. By generating an original AIF-deficient mouse strain, the present study sought to analyze, in a single paradigm, the cellular and developmental metabolic consequences of AIF loss and the subsequent oxidative phosphorylation (OXPHOS) dysfunction.Methods: We developed a novel AIF-deficient mouse strain and assessed, by molecular and cell biology approaches, the cellular, embryonic, and adult mice phenotypic alterations. Additionally, we carried out ex vivo assays with primary and immortalized AIF knockout mouse embryonic fibroblasts (MEFs) to establish the cell death characteristics and the metabolic adaptive responses provoked by the mitochondrial electron transport chain (ETC) breakdown.Results: AIF deficiency destabilized mitochondrial ETC and provoked supercomplex disorganization, mitochondrial transmembrane potential loss, and high generation of mitochondrial reactive oxygen species (ROS). AIF-/Y MEFs counterbalanced these OXPHOS alterations by mitochondrial network reorganization and a metabolic reprogramming towards anaerobic glycolysis illustrated by the AMPK phosphorylation at Thr172, the overexpression of the glucose assimilation transporter GLUT-4, the subsequent enhancement of glucose uptake, and the anaerobic lactate generation. A late phenotype was characterized by the activation of P53/P21-mediated senescence. Interestingly, about 2% of AIF-/Y MEFs diminished both mitochondrial mass and ROS levels and spontaneously proliferated. These cycling AIF-/Y MEFs were resistant to caspase-independent cell death inducers. The AIF-deficient mouse strain was embryonic lethal between E11.5 and E13.5 with energy loss, proliferation arrest, and increased apoptotic levels. Contrary to AIF-/Y MEFs, the AIF KO embryos were unable to reprogram their metabolism towards anaerobic glycolysis. Heterozygous AIF-/+ females displayed a progressive bone marrow, thymus, and spleen cellular loss. In addition, about 10% of AIF-/+ females developed perinatal hydrocephaly characterized by brain development impairment, meningeal fibrosis, and medullar hemorrhages; those mice died around 5 weeks of age. AIF-/+ with hydrocephaly exhibited loss of ciliated epithelium in the ependymal layer. This phenotype seemed triggered by the ROS excess. Accordingly, it was possible to diminish the occurrence of hydrocephalus AIF-/+ females by supplying dams and newborns with an antioxidant in drinking water.Conclusion: In a single knockout model and at three different levels (cell, embryo, and adult mice) we demonstrated that, by controlling the mitochondrial OXPHOS/metabolism, AIF is a key factor regulating cell differentiation and fate. Additionally, by shedding new light on the pathological consequences of mitochondrial OXPHOS dysfunction, our new findings pave the way for novel pharmacological strategies
    corecore