54 research outputs found

    Good scientific practice in MEEG Research: Progress and Perspectives

    Get PDF
    Good Scientific Practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization.For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be periodically revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research.This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges.Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons

    Language and Technology Literacy Barriers to Accessing Government Services

    No full text
    Abstract. The paper presents research aimed at overcoming barriers to citizens’ ability to access electronic government services. Our concern is specifically ‘non-connectivity ' barriers to electronic service delivery including cultural background, language, literacy and level of technology experience. These issues are investigated and solutions researched in a developing world context. The project on which the paper is based aims to develop a service delivery framework and technology where service delivery is personalised to citizen's unique circumstances taking into account the means by which they will have access to government services and individual characteristics such as language preference. In order to develop appropriate technological interventions, a number of field experiments are done to gain an improved understanding of the extent to which citizens ’ exposure to technology and home language affect their ability to access electronic services. These experiments will influence technology development on the project that will be incorporated in a technology demonstrator.

    Integration of day-ahead market and redispatch to increase cross-border exchanges in the European electricity market

    No full text
    The zonal electricity market design in the Central Western European electricity market relies on redispatching generation units after market closure to manage congestion within bidding zones, while congestion between the zones is handled using flow-based market coupling. The combination of internal congestion in the meshed European network with a growing share of renewables increases the frequency and magnitude of congestion events and limits cross-border trade. The growing costs of redispatching and the divergence between grid physics and zonal markets lead to welfare losses. This paper is the first to propose an approach to improve the combined efficiency of flow-based market coupling and redispatching. We develop a novel methodology for congestion management in a zonal market with flow-based market coupling in order to increase cross-border exchanges by integrating preventive redispatch into the day-ahead market. In this approach, a set of integrated redispatch units is selected based on their high potential to reduce congestion and, as a result, free up grid capacity for cross-border exchange. We use three multi-step optimization models to demonstrate the benefits of the enhanced zonal market with integrated redispatch by comparing it to the nodal market model and a zonal market model with flow-based market coupling. The case study demonstrates the potential of the proposed methodology to significantly increase cross-border capacity and reduce the need for costly ex post redispatch. The approach is shown to be a feasible option for improving European market integration and thereby to achieve overall welfare gains.Energy & Industr

    Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle

    No full text
    Lipid droplets (LD) play a central role in lipid homeostasis by controlling transient fatty acid (FA) storage and release from triacylglycerols stores, while preventing high levels of cellular toxic lipids. This crucial function in oxidative tissues is altered in obesity and type 2 diabetes. Perilipin 5 (PLIN5) is a LD protein whose mechanistic and causal link with lipotoxicity and insulin resistance has raised controversies. We investigated here the physiological role of PLIN5 in skeletal muscle upon various metabolic challenges. We show that PLIN5 protein is elevated in endurance-trained (ET) subjects and correlates with muscle oxidative capacity and whole-body insulin sensitivity. When overexpressed in human skeletal muscle cells to recapitulate the ET phenotype, PLIN5 diminishes lipolysis and FA oxidation under basal condition, but paradoxically enhances FA oxidation during forskolin-and contraction-mediated lipolysis. Moreover, PLIN5 partly protects muscle cells against lipid-induced lipotoxicity. In addition, we demonstrate that down-regulation of PLIN5 in skeletal muscle inhibits insulin-mediated glucose uptake under normal chow feeding condition, while paradoxically improving insulin sensitivity upon high-fat feeding. These data highlight a key role of PLIN5 in LD function, first by finely adjusting LD FA supply to mitochondrial oxidation, and second acting as a protective factor against lipotoxicity in skeletal muscle

    Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice.

    No full text
    OBJECTIVE: The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN: We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS: We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS: Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human

    Metabolic inflexibility is an early marker of bed-rest–induced glucose intolerance even when fat mass is stable

    No full text
    Context: The effects of energy-balanced bed rest on metabolic flexibility have not been thoroughly examined.Objective: We investigated the effects of 21 days of bed rest, with and without whey protein supplementation, on metabolic flexibility while maintaining energy balance. We hypothesized that protein supplementation mitigates metabolic inflexibility by preventing muscle atrophy.Design and Setting: Randomized crossover longitudinal study conducted at the German Aerospace Center, Cologne, Germany.Participants and Interventions: Ten healthy men were randomly assigned to dietary counter-measure or isocaloric control diet during a 21-day bed rest.Outcome Measures: Before and at the end of the bed rest, metabolic flexibility was assessed during a meal test. Secondary outcomes were glucose tolerance by oral glucose tolerance test, body composition by dual energy X-ray absorptiometry, ectopic fat storage by magnetic resonance imaging, and inflammation and oxidative stress markers.Results: Bed rest decreased the ability to switch from fat to carbohydrate oxidation when transitioning from fasted to fed states (i.e., metabolic inflexibility), antioxidant capacity, fat-free mass FFM), and muscle insulin sensitivity along with greater fat deposition in muscle (P < 0.05 for all). Changes in fasting insulin and inflammation were not observed. However, glucose tolerance was reduced during acute overfeeding. Protein supplementation did not prevent FFM loss and metabolic alterations.Conclusions: Physical inactivity triggers metabolic inflexibility, even when energy balance is maintained. Although reduced insulin sensitivity and increased fat deposition were observed at the muscle level, systemic glucose intolerance was detected only in response to a moderately high-fat meal. This finding supports the role of physical inactivity in metabolic inflexibility and suggests that metabolic inflexibility precedes systemic glucose intolerance
    corecore