49 research outputs found

    Molecular and Serological Evidence for the Presence of Novel Phleboviruses in Sandflies from Northern Algeria

    Get PDF
    During summer 2007, a total of 785 phlebotomine flies were trapped in northern Algeria, identified morphologically, organised as monospecific pools and tested for the presence of phlebovirus RNA using degenerate primers. Three pools were positive, and the corresponding PCR products were cloned and sequenced. Viral sequences corresponding to two phleboviruses distinct from each other were detected in sandflies circulating in two close locations (140 km apart) in Northern Algeria. The 3 sequences were aligned with homologous polymerase sequences retrieved from the Genbank database, in order to examine their phylogenetic relationships. One viral sequence (from Phlebotomus papatasi) was closely related to but distinct from a sequence obtained from Phlebotomus ariasi sandflies trapped in Algeria in 2006. The two other viral sequences (from Phlebotomus longicuspis) were genetically distantly related to sequences corresponding to virus members of the Sandfly fever Naples virus species and although falling within the same group, this clearly represents a second distinct novel lineage. These results are indicative of a high genetic heterogeneity within sandflies trapped in a relatively small geographic area. Seroprevalence studies conducted on sera from populations living in the same areas indicated that humans can be infected by these viruses

    Presence of sandfly-borne phleboviruses of two antigenic complexes (Sandfly fever Naples virus and Sandfly fever Sicilian virus) in two different bio-geographical regions of Tunisia demonstrated by a microneutralisation-based seroprevalence study in dogs

    Get PDF
    International audienceBACKGROUND: Sandfly-borne phleboviruses are present in North Africa where they can infect humans in regions where Leishmania infantum, the causative agent of zoonotic visceral leishmaniasis in the Western Mediterranean basin is present affecting both humans and dogs. We investigated the capacity of dogs to be used as sentinels for sandfly-borne phleboviruses as previously shown for leishmaniasis.FINDINGS: A total of 312 sera were collected from guard dogs in two different bioclimatic regions (governorates of Kairouan and Bizerte) of Tunisia where zoonotic visceral leishmaniasis has been reported. These sera were tested for the presence of neutralising antibodies against 3 phleboviruses: Toscana virus, Punique virus and Sicilian virus. In the governorate of Kairouan, seroprevalence rates of 7.5%, 43.5%, and 38.1% were observed for Toscana, Punique and Sicilian virus, respectively. A high proportion of sera from the governorate of Bizerte were hemolyzed and showed high cytotoxicity for the cells and subsequently precluded detailed interpretation of this batch. However, validated results for 27 sera were in agreement with data observed in the governorate of Kairouan.CONCLUSIONS: Toscana virus is present in the governorate of Kairouan but at a lower rate compared to Punique and Sicilian viruses. These three sandfly-borne phleboviruses can infect dogs. Direct detection and isolation of the viruses are now to be attempted in animals as well as in humans. Our findings showed that guard dogs are good sentinels for virus transmitted by sandflies and strongly suggested that the high seroprevalence rates observed in dogs merit further attention

    Ecuador Paraiso Escondido virus, a new flavivirus isolated from New World sand flies in Ecuador, is the first representative of a novel clade in the genus flavivirus

    Get PDF
    A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World.The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses

    Epidemiologic Relationship between Toscana Virus Infection and Leishmania infantum Due to Common Exposure to Phlebotomus perniciosus Sandfly Vector

    Get PDF
    Sand flies are recognised vectors of parasites in the genus Leishmania and a number of arthropod-borne viruses, in particular viruses within the genus Phlebovirus, family Bunyaviridae. In southern France, Toscana phlebovirus (TOSV) is recognized as a prominent cause of summer meningitis. Since Leishmania and TOSV have a common vector (Phlebotomus perniciosus), an epidemiologic link has been assumed for a long time. However, there is no scientific evidence of such a link between human leishmaniosis and phleboviral infections. To identify a possible link, we investigated the presence and distribution of antibodies against these two microorganisms (i) in individuals and (ii) at a spatial level in the city of Marseille (south-eastern France). Five hundred sera were selected randomly in the biobank of the Department of Parasitology of the Public Hospitals of Marseille. All sera were previously tested for IgG against Leishmania by Western Blotting, and TOSV IgG were detected by indirect immunofluorescence. The seropositivity rates were 21.4% for TOSV and 28% for Leishmania. Statistical analysis demonstrated that seropositivity for one pathogen was significantly associated with seropositivity to the other pathogen. This result provided the first robust evidence for the existence of an epidemiological relationship between Leishmania infantum and TOSV. Addresses of tested patients were geolocalized and integrated into Geographical Information System software, in order to test spatial relationship between the two pathogens. Spatial analysis did not allow to identify (i) specific patterns for the spatial distribution of positive serological results for TOSV or Leishmania, and (ii) a spatial relationship between Leishmania and TOSV positive serological results. This may reflect the fact that the sample studied was not powerful enough to demonstrate either a spatial clustering or co-location, i.e. that the actual risk exposure area is smaller than the mean of distance between patients in our study (245 m)

    Emerging phleboviruses around Mediterranean : epidemiology, virus discovery, and human transmission aspect

    No full text
    Les phlébotomes sont les vecteurs reconnus de plusieurs arbovirus, en particulier du genre Phlebovirus, ainsi que de parasites du genre Leishmania. Les infections par les phlébovirus sont responsables chez l’homme de maladies décrites depuis longtemps, pourtant ils demeurent méconnus, avec en particulier un manque de données épidémiologiques et d’outils de diagnostic.Dans une première partie, des études de séroprévalence nous ont permis d’aborder l’impact en santé publique, dans le sud-est de la France, de deux phlébovirus connus pour leur pouvoir pathogène chez l’homme, Toscana virus (TOSV) et Sandfly fever Sicilian virus (SFSV). Pour ce dernier, des anticorps spécifiques (IgG) ont été détectés dans moins de 1% des sérums testés, ce qui suggère que SFSV joue un rôle mineur dans les pathologies humaines de cette région ; ces résultats sont corroborés par l’absence, durant ces dernières décennies, de cas documentés d’infection aigüe due à SFSV en Europe occidentale. Nous avons donc pu concentrer notre travail sur le deuxième groupe de phlébovirus d’intérêt chez l’homme, le groupe des Sandfly fever Naples virus, qui inclut notamment TOSV. Nous avons démontré l’existence d’un lien épidémiologique entre les infections à Leishmania infantum et celles à TOSV, certainement dû au fait que ces pathogènes sont transmis par un vecteur commun (Phlebotomus perniciosus). Les analyses statistiques ont montré que les personnes exposées aux infections à TOSV ont plus de chance d’être aussi infectées par les parasites leishmanies (et vice versa). En admettant que ce lien épidémiologique entre leishmanioses et infections à TOSV est représenté par l’exposition à la piqûre d’un vecteur commun, cette étude confirme l’implication de Phlebotomus perniciosus en tant que vecteur principal de TOSV dans le sud de la France. Cette étude suggère également que certaines données épidémiologiques disponibles pour la leishmaniose pourraient être utilisées pour décrypter l’épidémiologie des infections à TOSV.La deuxième partie de cette thèse est consacrée à la détection, l’isolement et la caractérisation de virus, déjà connus ou inconnus, dans les populations de phlébotomes en France et en Afrique du Nord. Pour atteindre cet objectif, nous avons dû développer une plateforme d’analyse à au débit, adaptée pour la découverte de virus dans les phlébotomes, qui permette de traiter un grand nombre d’échantillons à faible coût. Cette plateforme a récemment été complétée par un outil de Next Generation Sequencing, afin de réaliser la caractérisation génétique complète des virus isolés et découverts. Au total, 12 576 phlébotomes ont été capturés au cours de 12 campagnes de capture menées en France, en Tunisie et en Algérie. Au sein d’une même zone géographique, la découverte de plusieurs nouveaux phlébovirus, ainsi que leur taux d’infection observé dans les populations de phlébotomes, ont démontré que la diversité de phlebovirus est bien plus importante qu’attendue.Dans la troisième partie de cette thèse, une étude de séroprévalence a été menée sur des sérums humains en utilisant des tests comparatifs de neutralisation de virus. Cette étude nous a permis d’exclure le virus Punique, récemment découvert, de la liste des principales menaces en santé publique au nord de la Tunisie, et de confirmer que TOSV est le principal phlebovirus pathogène ayant un impact en santé publique dans cette région du pays. Cette méthode de neutralisation est capable d’identifier précisément, parmi des virus génétiquement proches, le virus contre lequel les anticorps présents dans le sang ont été produits, ce qui permet de déterminer la capacité de chacun de ces virus à jouer un rôle en santé publique.Sandflies are vectors of various arthropod-borne viruses, in particular viruses within the genus Phlebovirus, family Bunyaviridae, and of parasites in the genus Leishmania. Human diseases caused by infection with sandfly-borne phleboviruses are known for a long time, but they remain neglected due to the lack of epidemiological knowledge and of diagnostic tools.The first part consisted of seroprevalence studies in human sera to address the public health impact in south-eastern France of two recognized sandfly-borne phleboviruses, namely Toscana virus (TOSV) and Sandfly fever Sicilian virus (SFSV). Concerning the latter, specific IgG were detected in less than 1% of tested sera, suggesting that SFSV play a minor role in human disease in the region; this finding was corroborated with the lack of documented case of acute infection due to SFSV in Western Europe during the last decade. This pleaded for focusing on the other group of sandfly fever viruses known for their human interest, namely the group of Sandfly fever Naples virus that includes TOSV. We demonstrated an existing epidemiological relationship between Leishmania infantum and TOSV infections, presumably through the transmission by the common arthropod vector (Phlebotomus perniciosus). Statistical analysis showed that persons exposed to TOSV infection are at greater risk of being infected with Leishmania parasite (and vice versa). Assuming that epidemiological link between leishmaniasis and TOSV infection may be represented by the exposure to the bite of a common vector, this study confirms the involvement of Phlebotomus perniciosus as the major vector of TOSV in the South of France. This study also suggests that some of the epidemiological data available on Leishmaniasis may be used to decipher the epidemiology of TOSV infections..The second part of this thesis was dedicated to detection, isolation and characterization of existing and/or new phleboviruses in sandfly populations in France and in North Africa. To achieve this aim, we had to set up a high-throughput cost-effective platform amenable to virus discovery in sandflies; this sandfly-processing platform has been recently docked to a Next Generation Sequencing platform for full genetic characterization of newly isolated and discovered viruses. A total of 12,576 sandflies were trapped during 12 campaigns conducted in France, Tunisia and Algeria. The discovery of several new phleboviruses and their observed frequency in sandfly populations has clearly demonstrated that within a given geographic area, virus diversity is much higher than previously believed.In the third part of this thesis, a seroprevalence study based on comparative virus neutralization tests was performed on human sera and allowed to exclude the newly described Punique virus from the list of major public health threats in northern Tunisia, and to confirm that TOSV is the dominant phleboviral pathogen with an impact on public health in this part of the country. This neutralization method is suitable to identify precisely the virus against which antibodues were elicited, allowing to discriminate among closely related phleboviruses, and to determine their propensity to play a role in public health

    Seroprevalence of Sandfly-Borne Phleboviruses Belonging to Three Serocomplexes (Sandfly fever Naples, Sandfly fever Sicilian and Salehabad) in Dogs from Greece and Cyprus Using Neutralization Test.

    No full text
    Phleboviruses transmitted by sandflies are endemic in the Mediterranean area. The last decade has witnessed the description of an accumulating number of novel viruses. Although, the risk of exposure of vertebrates is globally assessed, detailed geographic knowledge is poor even in Greece and Cyprus where sandfly fever has been recognized for a long time and repeatedly. A total of 1,250 dogs from mainland Greece and Greek archipelago on one hand and 422 dogs from Cyprus on the other hand have been sampled and tested for neutralising antibodies against Toscana virus (TOSV), Sandfly fever Sicilian virus (SFSV), Arbia virus, and Adana virus i.e. four viruses belonging to the 3 sandfly-borne serocomplexes known to circulate actively in the Mediterranean area. Our results showed that (i) SFSV is highly prevalent with 71.9% (50.7-84.9% depending on the region) in Greece and 60.2% (40.0-72.6%) in Cyprus; (ii) TOSV ranked second with 4.4% (0-15.4%) in Greece and 8.4% (0-11.4%) in Cyprus; (iii) Salehabad viruses (Arbia and Adana) displayed also substantial prevalence rates in both countries with values ranging from 0-22.6% depending on the region and on the virus strain used in the test. These results demonstrate that circulation of viruses transmitted by sand flies can be estimated qualitatively using dog sera. As reported in other regions of the Mediterranean, these results indicate that it is time to shift these viruses from the "neglected" status to the "priority" status in order to stimulate studies aiming at defining and quantifying their medical and veterinary importance and possible public health impact. Specifically, viruses belonging to the Sandfly fever Sicilian complex should be given careful consideration. This calls for implementation of direct and indirect diagnosis in National reference centers and in hospital microbiology laboratories and systematic testing of unelucidated febrile illness and central and peripheral nervous system febrile manifestations

    Toscana virus infections : a case series from France

    No full text
    Toscana virus (TOSV) is a neglected sandfly-borne pathogen in Mediterranean countries. Although discovered four decades ago, articles that describe the clinical aspects are scarce and consist mostly of case reports, with few series of cases. We studied retrospectively symptomatic TOSV infections in patients hospitalized in Marseille (France) from 2004 to 2011. Seventeen patients were classified as probable or confirmed cases. Fourteen cases (82%) occurred between June and September, and 3 cases in March, April and November. Two cases were potentially imported from Croatia and Tuscany. All patients presented with fever and neurological signs were observed such as aseptic meningitis (n = 6), muscular symptoms (n = 3), or encephalitis (n = 4). The outcome was always favorable. At the acute stage, anti TOSV IgM were observed in 14/17 patients, neutralization tests were positive for 3/8 patients, and RT-PCR confirmed TOSV infections in 5/8 CSF specimens

    Sandfly-Borne Phleboviruses of Eurasia and Africa: Epidemiology, Genetic Diversity, Geographic Range, Control Measures

    No full text
    Sandfly-borne phleboviruses may cause a transient febrile illness (sandfly fever) or more severe neuroinvasive disease. In the Old World, they are vectored by phlebotomine flies, which are widely distributed in the Mediterranean basin, North Africa, the Indian subcontinent, the Middle East and central Asia. High seroprevalence rates have been recorded in humans and domestic animals in areas where sandflies are present. Most published studies have focused on phlebovirus infections of travelers and of soldiers stationed in endemic areas, but the health impact on local populations should not be underestimated, as seroprevalence studies indicate massive circulation of these viruses, even if disease is seldom documented. Except for Toscana virus, which shows a marked neurotropism and is a leading cause of aseptic meningitis in endemic regions, phlebovirus infections are inadequately considered by physicians and are generally underestimated. However, several properties of these viruses suggest that they will extend their geographic range. First, changes in the areas occupied by sandflies as a result of climate change have a direct impact on the epidemiology of associated human and animal diseases. Second, phleboviruses exhibit a high mutation rate, and their tri-segmented genome is prone to reassortment and recombination. Third, distinct virus strains can be transmitted by the same arthropod species. Recent studies have documented the distribution of sandfly-borne phleboviruses in Western Europe, but data for Eastern Europe, the Middle East and Africa are very limited. With the goal of filling knowledge gaps and planning new research programs, we have examined available information and present it as a comprehensive review, with a specific focus on understudied regions. We also discuss the need to conduct studies aimed at developing new antiviral drugs and vaccines. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.WoSScopu
    corecore