18 research outputs found

    Evolutionary Dynamics of Multigene Families in Triportheus (Characiformes, Triportheidae): A Transposon Mediated Mechanism?

    Get PDF
    Triportheus (Characiformes, Triportheidae) is a freshwater fish genus with 18 valid species. These fishes are widely distributed in the major river drainages of South America, having commercial importance in the fishing market, mainly in the Amazon basin. This genus has diverged recently in a complex process of speciation carried out in different river basins. The use of repetitive sequences is suitable to trace the genomic reorganizations occured along the speciation process. In this work, the 5S rDNA multigene family has been characterized at molecular and phylogenetic level. The results showed that other multigene family has been found within the non-transcribed spacer (NTS): the U1 snRNA gene. Double-FISH with 5S and U1 probes were also performed, confirming the close linkage between these two multigene families. Moreover, evidences of different transposable elements (TE) were detected within the spacer, thus suggesting a transposon-mediated mechanism of 5S-U1 evolutionary pathway in this genus. Phylogenetic analysis demonstrated a species-specific grouping, except for Triportheus pantanensis, Triportheus aff. rotundatus and Triportheus trifurcatus. The evolutionary model of the 5S rDNA in Triportheus species has been discussed. In addition, the results suggest new clues for the speciation and evolutionary trend in these species, which could be suitable to use in other Characiformes species

    COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)

    Get PDF
    Background: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. Results: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.EPICOVIDEHA has received funds from Optics COMMITTM (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223)

    Effect of mahogany seed extract on the blood sugar level of mice

    No full text
    The effects of three concentrations: 25%, 50% and 100% of mahogany seed extract were tested on the blood sugar of female white mice. Dosages of the mahogany seed extract were force-fed to the mice and blood sugar levels were measured weekly for six weeks using Accu-Check 111 machine (glucometer). Generally, a decreasing trend was observed among the treated groups. Significant reductions were found in the blood sugar levels of mice force-fed with 25% and 50% mahogany seed extract during the third until the sixth week. The blood sugar levels of mice decreased from 75.45 mg/dl in the 50% concentration. Mice force-fed with 100% mahogany seed extract had a significant decrease during week five with 64.00 mg/dl and week six with 57.44 mg/dl. The levels of decrease in blood sugar among the five groups did not differ significantly from one another

    The Knapsack Problem with forfeit sets

    No full text
    This work introduces a novel extension of the 0/1 Knapsack Problem in which we consider the existence of so-called forfeit sets. A forfeit set is a subset of items of arbitrary cardinality, such that including a number of its elements that exceeds a predefined allowance threshold implies some penalty costs to be paid in the objective function value. A global upper bound on these allowance violations is also considered. We show that the problem generalizes both the Knapsack Problem with conflicts among item pairs and the Knapsack Problem with forfeit pairs, that have been previously introduced in the literature. We present a polynomial subcase by proving the integrality of its LP relaxation polytope and, we introduce three heuristic approaches, namely a constructive greedy, an algorithm based on the recently introduced Carousel Greedy paradigm and a hybrid Memetic/Carousel Greedy algorithm. Finally, we validate the performances for the proposed algorithms on a set of benchmark instances that consider both random and correlated data

    A genetic approach for the maximum network lifetime problem with additional operating time slot constraints

    No full text
    The maximum network lifetime problem is a well-known and challenging optimization problem which has been addressed successfully with several approaches in the last years. It essentially consists in finding an optimal schedule for sensors activities in a wireless sensor network (WSN) aiming at maximizing the total amount of time during which the WSN is able to perform its monitoring task. In this paper, we consider a new scenario in which, in order to monitor some locations in a geographical area, the sensors need to be active for a fixed amount of time, defined as operating time slot. For this new scenario, we derive an upper bound on the maximum lifetime and propose a genetic algorithm for finding a near-optimal node activity schedule. The performance evaluation results obtained on numerous benchmark instances show the effectiveness of the proposed approach

    The constrained forward shortest path tour problem: Mathematical modeling and GRASP approximate solutions

    No full text
    This paper deals with the Constrained Forward Shortest Path Tour Problem, an NP-complete variant of the Forward Shortest Path Tour Problem. Given a directed weighted graph G = (V, A), where the set of nodes V is partitioned into clusters T1, …, TN, the aim is determining a shortest path between two given nodes, s and d, with the properties that clusters must be visited according to a given order, and each arc can be crossed at most once. We introduce a mathematical formulation of the problem, and a reduction procedure to reduce the number of variables involved in the model. Furthermore, we propose a Greedy Randomized Adaptive Search Procedure (GRASP) algorithm to solve large instances of the problem. Computational tests show that the reduction procedure is very effective and its application significantly speeds up the resolution of the model. Moreover, the computational results certify the effectiveness of GRASP that often finds the optimal solution and, in general, provides quickly high-quality sub-optimal solutions

    A genetic approach for the 2-edge-connected minimum branch vertices problem

    No full text
    This article addresses the 2-edge-connected minimum branch vertices problem, a variant of the minimum branch vertices problem in which the spanning subgraph is required to be 2-edge-connected for survivability reasons. The problem has been recently introduced and finds application in optical networks design scenarios, where branch vertices are associated to switch devices that allow to split the entering light signals and send them to several adjacent vertices. An exact approach to the problem has been proposed in the literature. In this paper, we formally prove its NP-completeness and propose a genetic algorithm, which exploits some literature-provided procedures for efficiently checking and restoring solutions feasibility, and makes use of novel ad-hoc designed operators aiming to improve their values, reducing the number of branch vertices. The computational tests show that, on the benchmark instances, the genetic algorithm very often finds the optimal solution. Moreover, in order to further investigate the effectiveness and the performance of our algorithm, we generated a new set of random instances where the optimal solution is known a priori
    corecore