4,256 research outputs found

    Evolution and relationships of the conifer seed cone telemachus: Evidence from the triassic of antarctica

    Get PDF
    The seed cone Telemachus is known from several Triassic localities in Gondwana. New specimens from two localities in Antarctica provide additional information about the type species, Telemachus elongatus, based on details of morphology and anatomy revealed by using a modified transfer technique on the compressed plants. Seed cones of T. elongatus are up to 6.0 cm long and characterized by conspicuous, elongate bracts. A second Antarctic species, described here as Telemachus antarcticus, is segregated, based on a shorter bract and differences in cone size. Newly recognized features of the genus include the shape, size, and disposition of the ovules; vascularization of the ovuliferous complex; and scale and bract histology. As a result of this new information, it is now possible to compare Telemachus with the permineralized Middle Triassic conifer seed cone Parasciadopitys from the Central Transantarctic Mountains. The similarities between the two genera make it possible to relate organs in different preservational modes and to develop a more complete concept for this widely distributed Gondwana conifer. Placing the Telemachus plant within a phylogenetic context makes it possible to evaluate the relationship with other so-called transitional conifers, an informal group that has been interpreted as intermediate between Paleozoic and modern conifers.Fil: Escapa, Ignacio Hernán. University of Kansas; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Decombeix, Anne-Laure. University of Kansas; Estados UnidosFil: Taylor, Edith L.. University of Kansas; Estados UnidosFil: Taylor, Thomas N.. University of Kansas; Estados Unido

    Polarization dOTF: on-sky focal plane wavefront sensing

    Full text link
    The differential Optical Transfer Function (dOTF) is a focal plane wavefront sensing method that uses a diversity in the pupil plane to generate two different focal plane images. The difference of their Fourier transforms recovers the complex amplitude of the pupil down to the spatial scale of the diversity. We produce two simultaneous PSF images with diversity using a polarizing filter at the edge of the telescope pupil, and a polarization camera to simultaneously record the two images. Here we present the first on-sky demonstration of polarization dOTF at the 1.0m South African Astronomical Observatory telescope in Sutherland, and our attempt to validate it with simultaneous Shack-Hartmann wavefront sensor images.Comment: 11 pages, 9 figures, Proc. SPIE Vol. 991

    Signatures of Secondary Collisionless Magnetic Reconnection Driven by Kink Instability of a Flux Rope

    Full text link
    The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic reconnection events in space, astrophysical and fusion plasmas

    Simultaneous Identification of the Diffusion Coefficient and the Potential for the Schr\"odinger Operator with only one Observation

    Full text link
    This article is devoted to prove a stability result for two independent coefficients for a Schr\"odinger operator in an unbounded strip. The result is obtained with only one observation on an unbounded subset of the boundary and the data of the solution at a fixed time on the whole domain

    Thermo-rheological-kinetical Study of Compression Molding of Fibre-reinforced Composites

    Get PDF
    International audienceTo improve the modeling of fiber reinforced composites, we present in this work numerical methods able to compute both fiber-reinforced composites deformation in squeeze flow and thermal-kinetic evolution. The rheology is given by an homogeneous orthotropic model for fiber composites which describes the anisotropy of the in-plane fiber. The thermics is then extended accounting for the reaction here formulated by the Bailleul's model. Both physics are related since the kinetic evolution as well as the temperature profile modify the rheology of the composites, giving raise to the thermo-rheological-kinetical coupling by means of the viscosity temperature dependence. A study case is presented, where the mold temperature is set to 150 • C with a composite sample at 40 • C. Thermal transfer begins as well as sample compression at constant speed. We present the evolution of the reaction, temperature and viscosity at the core and the surface. Reaction in the core of the material is much quicker than in the surface. Which means that a mapping of viscosity values is presented during the reaction modifying the mechanical response

    Homogenization of linear transport equations in a stationary ergodic setting

    Full text link
    We study the homogenization of a linear kinetic equation which models the evolution of the density of charged particles submitted to a highly oscillating electric field. The electric field and the initial density are assumed to be random and stationary. We identify the asymptotic microscopic and macroscopic profiles of the density, and we derive formulas for these profiles when the space dimension is equal to one.Comment: 24 page

    RNA-Based Detection Does not Accurately Enumerate Living Escherichia coli O157:H7 Cells on Plants

    Get PDF
    The capacity to distinguish between living and dead cells is an important, but often unrealized, attribute of rapid detection methods for foodborne pathogens. In this study, the numbers of enterohemorrhagic Escherichia coli O157:H7 after inoculation onto Romaine lettuce plants and on plastic (abiotic) surfaces were measured over time by culturing, and quantitative PCR (qPCR), propidium monoazide (PMA)-qPCR, and reverse transcriptase (RT)-qPCR targeting E. coli O157:H7 gapA, rfbE, eae, and lpfA genes and gene transcripts. On Romaine lettuce plants incubated at low relative humidity, E. coli O157:H7 cell numbers declined 107-fold within 96 h according to culture-based assessments. In contrast, there were no reductions in E. coli levels according to qPCR and only 100- and 1000-fold lower numbers per leaf by RT-qPCR and PMA-qPCR, respectively. Similar results were obtained upon exposure of E. coli O157:H7 to desiccation conditions on a sterile plastic surface. Subsequent investigation of mixtures of living and dead E. coli O157:H7 cells strongly indicated that PMA-qPCR detection was subject to false-positive enumerations of viable targets when in the presence of 100-fold higher numbers of dead cells. RT-qPCR measurements of killed E. coli O157:H7 as well as for RNaseA-treated E. coli RNA confirmed that transcripts from dead cells and highly degraded RNA were also amplified by RT-qPCR. These findings show that neither PMA-qPCR nor RT-qPCR provide accurate estimates of bacterial viability in environments where growth and survival is limited
    • …
    corecore