165 research outputs found

    Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice

    Get PDF
    We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling β-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia. © 2015 Bindels et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.LBB is a Postdoctoral Researcher from the F.R.S.-FNRS (Fond National de la Recherche Scientifique, Belgium). NS is the recipient of a postdoctoral fellowship from the Spanish Ministry of Education, Culture and Sports. CD benefits from a Danone Institute grant. PDC is a research associate at FRS-FNRS (Fonds de la Recherche Scientifique, Belgium). GGM is a recipient of grants from FRS-FNRS and from FSR (UCL, Belgium). Financial support has been provided by a grant from the Walloon Region (Hydrasanté Project, convention 816875) and by a grant from the Spanish Ministry of Economy and Competitiveness (AGL2010-16525). NMD and PDC are recipients of grants from FNRS, and PDC is a recipient of ERC Starting Grant 2013 (European Research Council, Starting Grant 336452-ENIGMO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer Reviewe

    A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself

    Get PDF
    Inflammatory bowel diseases (IBD) are likely driven by aberrant immune responses directed against the resident microbiota. Although IBD is commonly associated with a dysbiotic microbiota enriched in putative pathobionts, the etiological agents of IBD remain unknown. Using a pathobiont-induced intestinal inflammation model and a defined bacterial community, we provide new insights into the immune-microbiota interactions during disease. In this model system, the pathobiont Helicobacter bilis instigates disease following sub-pathological dextran sulfate sodium treatment. We show that H. bilis causes mild inflammation in mono-associated mice, but severe disease in the presence of a microbiota, demonstrating synergy between the pathobiont and microbiota in exacerbating pathology. Remarkably, inflammation depends on the presence of H. bilis, but is marked by a predominant Th17 response against specific members of the microbiota and not the pathobiont, even upon the removal of the most immune-dominant taxa. Neither increases in pathobiont burden nor unique changes in immune-targeted microbiota member abundances are observed during disease. Collectively, our findings demonstrate that a pathobiont instigates inflammation without being the primary target of a Th17 response or by altering the microbiota community structure. Moreover, our findings point toward monitoring pathobiont-induced changes in microbiota immune targeting as a new concept in IBD diagnotics

    Commensal \u3ci\u3eEscherichia coli\u3c/i\u3e Strains Can Promote Intestinal Inflammation via Differential Interleukin-6 Production

    Get PDF
    Escherichia coli is a facultative anaerobic symbiont found widely among mammalian gastrointestinal tracts. Several human studies have reported increased commensal E. coli abundance in the intestine during inflammation; however, host immunological responses toward commensal E. coli during inflammation are not well-defined. Here, we show that colonization of gnotobiotic mice with different genotypes of commensal E. coli isolated from healthy conventional microbiota mice and representing distinct populations of E. coli elicited strain-specific disease phenotypes and immunopathological changes following treatment with the inflammatory stimulus, dextran sulfate sodium (DSS). Production of the inflammatory cytokines GM-CSF, IL-6, and IFN-y was a hallmark of the severe inflammation induced by E. coli strains of Sequence Type 129 (ST129) and ST375 following DSS administration. In contrast, colonization with E. coli strains ST150 and ST468 caused mild intestinal inflammation and triggered only low levels of pro-inflammatory cytokines, a response indistinguishable from that of E. coli-free control mice treated with DSS. The disease development observed with ST129 and ST375 colonization was not directly associated with their abundance in the GI tract as their levels did not change throughout DSS treatment, and no major differences in bacterial burden in the gut were observed among the strains tested. Data mining and in vivo neutralization identified IL-6 as a key cytokine responsible for the observed differential disease severity. Collectively, our results show that the capacity to exacerbate acute intestinal inflammation is a strain-specific trait that can potentially be overcome by blocking the pro-inflammatory immune responses that mediate intestinal tissue damage

    Microbiota and Metabolite Profiling as Markers of Mood Disorders: A Cross-Sectional Study in Obese Patients

    Get PDF
    Obesity is associated with an increased risk of several neurological and psychiatric diseases, but few studies report the contribution of biological features in the occurrence of mood disorders in obese patients. The aim of the study is to evaluate the potential links between serum metabolomics and gut microbiome, and mood disturbances in a cohort of obese patients. Psychological, biological characteristics and nutritional habits were evaluated in 94 obese subjects from the Food4Gut study stratified according to their mood score assessed by the Positive and Negative Affect Schedule (PANAS). The fecal gut microbiota and plasma non-targeted metabolomics were analysed. Obese subjects with increased negative mood display elevated levels of Coprococcus as well as decreased levels of Sutterella and Lactobacillus. Serum metabolite profile analysis reveals in these subjects altered levels of several amino acid-derived metabolites, such as an increased level of L-histidine and a decreased in phenylacetylglutamine, linked to altered gut microbiota composition and function rather than to differences in dietary amino acid intake. Regarding clinical profile, we did not observe any differences between both groups. Our results reveal new microbiota-derived metabolites that characterize the alterations of mood in obese subjects, thereby allowing to propose new targets to tackle mood disturbances in this context. Food4gut, clinicaltrial.gov: NCT03852069

    Resistant starch can improve insulin sensitivity independently of the gut microbiota

    Get PDF
    Background: Obesity-related diseases, including type 2 diabetes and cardiovascular disease, have reached epidemic proportions in industrialized nations, and dietary interventions for their prevention are therefore important. Resistant starches (RS) improve insulin sensitivity in clinical trials, but the mechanisms underlying this health benefit remain poorly understood. Because RS fermentation by the gut microbiota results in the formation of physiologically active metabolites, we chose to specifically determine the role of the gut microbiota in mediating the metabolic benefits of RS. To achieve this goal, we determined the effects of RS when added to a Western diet on host metabolism in mice with and without a microbiota. Results: RS feeding of conventionalized mice improved insulin sensitivity and redressed some of the Western diet-induced changes in microbiome composition. However, parallel experiments in germ-free littermates revealed that RS-mediated improvements in insulin levels also occurred in the absence of a microbiota. RS reduced gene expression of adipose tissue macrophage markers and altered cecal concentrations of several bile acids in both germ-free and conventionalized mice; these effects were strongly correlated with the metabolic benefits, providing a potential microbiota-independent mechanism to explain the physiological effects of RS. Conclusions: This study demonstrated that some metabolic benefits exerted by dietary RS, especially improvements in insulin levels, occur independently of the microbiota and could involve alterations in the bile acid cycle and adipose tissue immune modulation. This work also sets a precedent for future mechanistic studies aimed at establishing the causative role of the gut microbiota in mediating the benefits of bioactive compounds and functional foods

    Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation

    No full text
    Bile acids are potent signaling molecules exerting diverse actions through bile 8 acid-activated receptors. Among them, the Farnesoid X receptor (FXR) and the 9 Takeda G protein-coupled receptor 5 (TGR5; GPBAR1), modulate the inflamma10 tion occurring in chronic/acute hepatitis, cholestasis, and inflammatory bowel 11 disease. A role for other bile acid-responsive receptors in this context is emerging. 12 This review aims to summarize recent advances on the immune-modulatory 13 actions of the bile acid-responsive receptors Shingosine-1-phosphate receptor 14 2 (S1PR2), pregnane X receptor (PXR), constitutive androstane receptor (CAR), 15 vitamin D receptor (VDR), and retinoic acid-related orphan receptor γt (RORγt). 16 How microbiota-derived bile acids contribute to intestinal and hepatic inflamma17 tion, potentially through these receptors, is also discussed. These concepts pave 18 the way to novel and innovative strategies aiming at modulating the gut microbiota 1920 to tackle inflammatory syndromes
    corecore