69 research outputs found

    Nutrient enrichment stimulates herbivory and alters epibiont assemblages at the edge but not inside subtidal macroalgal forests

    Get PDF
    AbstractNutrient enrichment is a major threat to subtidal macroalgal forests. Several studies have shown that nutrient inputs can enhance the ability of opportunistic algal species to acquire space freed by disturbance, at the expense of architecturally complex species that form forests. However, competition between canopy- and turf-forming macroalgae is not limited to the aftermath of disturbance. Canopy-forming macroalgae can provide suitable substratum for diverse epibiont assemblages, including both algae (epiphytes) and sessile invertebrates (epizoans). Despite evidence of enhanced epiphyte loading under eutrophic conditions, few experimental studies have assessed how nutrient enrichment influences the structure of epibiont assemblages on canopy-forming macroalgae at the edge versus inside forests. In oligotrophic waters of the NW Mediterranean, we experimentally tested the hypothesis that nutrient-driven proliferation of opportunistic epiphytic algae would affect the performance of the fucoid, Carpodesmia brachycarpa, and reduce the richness and abundance of the epizoan species they support. We predicted negative effects of nutrient enrichment to be greater at the edge than inside forests and on thalli that had recovered in cleared areas than on those within undisturbed canopy stands. Nutrient enrichment did not affect the photosynthetic efficiency and reproductive output of C. brachycarpa. By contrast, it enhanced herbivore consumption and decreased the cover and diversity of epizoans at forest edges, likely by stimulating the foraging activity of Arbacia lixula, the most abundant sea urchin in adjacent encrusting coralline barrens. Fertilization of areas inside forests had no effect on either C. brachycarpa or epibiont assemblages. Finally, nutrient enrichment effects did not vary between cleared and undisturbed areas. Our results show that moderate nutrient enrichment of oligotrophic waters does not necessarily cause the proliferation of epiphytes and, hence, a strengthening of their competitive effects on canopy-forming macroalgae. Nevertheless, enhanced herbivory damage to fertilized thalli at forest edges suggests that fragmentation could reduce the resilience of macroalgal forests and associated epibiont assemblages to nutrient enrichment

    A Comparative Approach to Detect Macrobenthic Response to the Conversion of an Inshore Mariculture Plant into an IMTA System in the Mar Grande of Taranto (Mediterranean Sea, Italy)

    Get PDF
    The expected bioremediation effect, driven by the conversion of an inshore mariculture plant into an Integrated Multi-Trophic Aquaculture (IMTA) system, which could mitigate the fish farm impact, related to the accumulation of organic matter on the seabed, has been studied. The ecological quality status was studied following a Before-After-Control-Impact (BACI) design and variation measured through M-AMBI and compared with the results of univariate and multivariate analyses of variance, to evaluate the sensitivity of the two methodologies. Results from M-AMBI indicated a sharp change in the ecological quality status, just after one year of the conversion of the plant. By contrast, although changes were detected also utilizing univariate and multivariate statistical analysis, the natural temporal variability characterizing the area partially masked evidence of environmental amelioration

    Vasculitis and COVID-19: what do we have to know?

    Get PDF
    As the main title 'COVID-19 revolution: a new challenge for the internist' states, the global coronavirus infection disease 2019 (COVID-19) pandemic represented a new challenge for the internists. This paper is part of a series of articles written during the difficult period of the ongoing global pandemic and published all together in this fourth issue of the Italian Journal of Medicine, with the aim of sharing the direct experiences of those who were the first to face this severe emergency, expressing each point of view in the management of COVID-19 in relation to other diseases. Each article is therefore the result of many efforts and a joint collaboration between many colleagues from the Departments of Internal Medicine or Emergency Medicine of several Italian hospitals, engaged in the front line during the pandemic. These preliminary studies therefore cover diagnostic tools available to health care personnel, epidemiological reflections, possible new therapeutic approaches, discharge and reintegration procedures to daily life, the involvement of the disease not only in the lung, aspects related to various comorbidities, such as: coagulopathies, vasculitis, vitamin D deficiency, gender differences, etc.. The goal is to offer a perspective, as broad as possible, of everything that has been done to initially face the pandemic in its first phase and provide the tools for an increasingly better approach, in the hope of not arriving unprepared to a possible second wave. This paper in particular deals with vasculitis and COVID-19

    The date mussel Lithophaga lithophaga: Biology, ecology and the multiple impacts of its illegal fishery

    Get PDF
    none8The date mussel Lithophaga lithophaga is an edible endolithic bivalve, protected by the EU Habitats Directive and other international agreements, living inside carbonate rocks. Its illegal harvesting is carried by breaking the rockswhere the bivalve grows. The impact has cascade consequences as it causes permanent changes in the substrate characteristics, the removal of benthic species, a shift from highly complex to structurally simplified habitats. As a result, the rich biodiversity of rocky reefs turns into a biological desert, named “barren”. Alongwith the over exploitation of fish, this practice leads to the increase of sea urchin density and grazing pressure on habitats, hampering the resilience of the associated biodiversity and functions. This paper summarizes the information on date mussel biology, ecology, ecotoxicology, fishery and the legal framework regulating its protection. Evidence indicates that illegal harvesting is still operated and widespread along the Mediterranean and has huge costs in terms of loss of natural capital and ecosystem services, and in terms of active ecological restoration. Two case study areas (the Sorrento and Salento peninsulas) were selected to assess the economic costs of this practice. Tangible economic costs in terms of ecosystems services' loss are huge (from ca. 35,000 to more than 400,000 euros/year in 6.6 km of Sorrento and ca. 1.8 million euros/year along the 69 km of Salento). These costs are, on average, ca. 30 times lower than those of ecosystem restoration. Data mining from websites indicates that date mussels are presently commercialized in hundreds of restaurants in Greece, Balkan countries, Spain and Italy, favoured also by the lack of appropriate consumer information. This practice should be controlled and contrasted at local scale, enforced by national legislations, and implemented by transnational initiatives. Social campaigns are needed to increase public awareness of the serious consequences of date-mussel fishery and consumptionopenAlberto Colletti; Beatrice Savinelli; Giorgia Di Muzio; Lucia Rizzo; Laura Tamburello; Simonetta Fraschetti; Luigi Musco; Roberto DanovaroColletti, Alberto; Savinelli, Beatrice; Di Muzio, Giorgia; Rizzo, Lucia; Tamburello, Laura; Fraschetti, Simonetta; Musco, Luigi; Danovaro, Robert

    Deterministic Factors Overwhelm Stochastic Environmental Fluctuations as Drivers of Jellyfish Outbreaks

    Get PDF
    16 pages, 4 figures, 1 table, supporting Information http://dx.doi.org/10.1371/journal.pone.0141060Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the futureThe authors gratefully acknowledge financial support by the European Community Seventh Framework Programme (FP7/2007–2013) for the project VECTORS (grant agreement no. 266445) (URL: http://cordis.europa.eu/fp7/home_en.html). AC was supported by a doctoral fellowship from the Chilean National Commission for Scientific and Technological Research (CONICYT – PFCHA/Doctorado al Extranjero 4a Convocatoria, 72120016).Peer Reviewe

    Nutrient Loading Fosters Seagrass Productivity under Ocean Acidification

    Get PDF
    The effects of climate change are likely to be dependent on local settings. Nonetheless, the compounded effects of global and regional stressors remain poorly understood. Here, we used CO2vents to assess how the effects of ocean acidification on the seagrass, Posidonia oceanica, and the associated epiphytic community can be modified by enhanced nutrient loading. P. oceanica at ambient and low pH sites was exposed to three nutrient levels for 16 months. The response of P. oceanica to experimental conditions was assessed by combining analyses of gene expression, plant growth, photosynthetic pigments and epiphyte loading. At low pH, nutrient addition fostered plant growth and the synthesis of photosynthetic pigments. Overexpression of nitrogen transporter genes following nutrient additions at low pH suggests enhanced nutrient uptake by the plant. In addition, enhanced nutrient levels reduced the expression of selected antioxidant genes in plants exposed to low pH and increased epiphyte cover at both ambient and low pH. Our results show that the effects of ocean acidification on P. oceanica depend upon local nutrient concentration. More generally, our findings suggest that taking into account local environmental settings will be crucial to advance our understanding of the effects of global stressors on marine systems

    A Roadmap for the Restoration of Mediterranean Macroalgal Forests

    Full text link
    Canopy-forming macroalgae play a crucial role in coastal primary production and nutrient cycling, providing food, shelter, nurseries, and habitat for many vertebrate and invertebrate species. However, macroalgal forests are in decline in various places and natural recovery is almost impossible when populations become locally extinct. Hence, active restoration emerges as the most promising strategy to rebuild disappeared forests. In this regard, significant efforts have been made by several EU institutions to research new restoration tools for shallow and mesophotic reef habitats (e.g., MERCES EU project, AFRIMED, and ROCPOP-life) and effective techniques have subsequently been proposed to promote self-sustaining populations. Recent research indicates that macroalgal forest recovery requires a broad spectrum of measures, ranging from mitigating human impacts to restoring the most degraded populations and habitats, and that the viability of large restoration actions is compromised by ongoing human pressures (e.g., pollution, overgrazing, and climate change). We propose a roadmap for Mediterranean macroalgal restoration to assist researchers and stakeholders in decision-making, considering the most effective methods in terms of cost and costeffectiveness, and taking background environmental conditions and potential threats into account. Last, the challenges currently faced by the restoration of rocky coastal ecosystems under changing climate conditions are also discussed

    VIGIL: a Python tool for automatized probabilistic VolcanIc Gas dIspersion modeLling

    Get PDF
    Probabilistic volcanic hazard assessment is a standard methodology based on running a deterministic hazard quantification tool multiple times to explore the full range of uncertainty in the input parameters and boundary conditions, in order to probabilistically quantify the variability of outputs accounting for such uncertainties. Nowadays, different volcanic hazards are quantified by means of this approach. Among these, volcanic gas emission is particularly relevant given the threat posed to human health if concentrations and exposure times exceed certain thresholds. There are different types of gas emissions but two main scenarios can be recognized: hot buoyant gas emissions from fumaroles and the ground and dense gas emissions feeding density currents that can occur, e.g., in limnic eruptions. Simulation tools are available to model the evolution of critical gas concentrations over an area of interest. Moreover, in order to perform probabilistic hazard assessments of volcanic gases, simulations should account for the natural variability associated to aspects such as seasonal and daily wind conditions, localized or diffuse source locations, and gas fluxes. Here we present VIGIL (automatized probabilistic VolcanIc Gas dIspersion modeLling), a new Python tool designed for managing the entire simulation workflow involved in single and probabilistic applications of gas dispersion modelling. VIGIL is able to manage the whole process from meteorological data processing, needed to run gas dispersion in both the dilute and dense gas flow scenarios, to the post processing of models’ outputs. Two application examples are presented to show some of the modelling capabilities offered by VIGIL

    Aspects of Benthic Decapod Diversity and Distribution from Rocky Nearshore Habitat at Geographically Widely Dispersed Sites

    Get PDF
    Relationships of diversity, distribution and abundance of benthic decapods in intertidal and shallow subtidal waters to 10 m depth are explored based on data obtained using a standardized protocol of globally-distributed samples. Results indicate that decapod species richness overall is low within the nearshore, typically ranging from one to six taxa per site (mean = 4.5). Regionally the Gulf of Alaska decapod crustacean community structure was distinguishable by depth, multivariate analysis indicating increasing change with depth, where assemblages of the high and mid tide, low tide and 1 m, and 5 and 10 m strata formed three distinct groups. Univariate analysis showed species richness increasing from the high intertidal zone to 1 m subtidally, with distinct depth preferences among the 23 species. A similar depth trend but with peak richness at 5 m was observed when all global data were combined. Analysis of latitudinal trends, confined by data limitations, was equivocal on a global scale. While significant latitudinal differences existed in community structure among ecoregions, a semi-linear trend in changing community structure from the Arctic to lower latitudes did not hold when including tropical results. Among boreal regions the Canadian Atlantic was relatively species poor compared to the Gulf of Alaska, whereas the Caribbean and Sea of Japan appeared to be species hot spots. While species poor, samples from the Canadian Atlantic were the most diverse at the higher infraordinal level. Linking 11 environmental variables available for all sites to the best fit family-based biotic pattern showed a significant relationship, with the single best explanatory variable being the level of organic pollution and the best combination overall being organic pollution and primary productivity. While data limitations restrict conclusions in a global context, results are seen as a first-cut contribution useful in generating discussion and more in-depth work in the still poorly understood field of biodiversity distribution
    corecore