40 research outputs found

    Effective balance equations for poroelastic composites

    Get PDF
    We derive the quasi-static governing equations for the macroscale behaviour of a linear elastic porous composite comprising a matrix interacting with inclusions and/or fibres, and an incompressible Newtonian fluid flowing in the pores. We assume that the size of the pores (the microscale) is comparable with the distance between adjacent subphases and is much smaller than the size of the whole domain (the macroscale). We then decouple spatial scales embracing the asymptotic (periodic) homogenization technique to derive the new macroscale model by upscaling the fluid–structure interaction problem between the elastic constituents and the fluid phase. The resulting system of partial differential equations is of poroelastic type and encodes the properties of the microstructure in the coefficients of the model, which are to be computed by solving appropriate cell problems which reflect the complexity of the given microstructure. The model reduces to the limit case of simple composites when there are no pores, and standard Biot’s poroelasticity whenever only the matrix–fluid interaction is considered. We further prove rigorous properties of the coefficients, namely (a) major and minor symmetries of the effective elasticity tensor, (b) positive definiteness of the resulting Biot’s modulus, and (c) analytical identities which allow us to define an effective Biot’s coefficient. This model is applicable when the interactions between multiple solid phases occur at the porescale, as in the case of various systems such as biological aggregates, constructs, bone, tendons, as well as rocks and soil

    Labor Market Rigidity, Social Policy and the Labor Share. Empirical evidence before and after the big crisis.

    Get PDF
    We estimate the impact of four important and general policies shaping the degree of labor market rigidity on the labor share: the intensity of employment protection, welfare expenditures, government expenditures on active labor market programs, and minimum wage policy. Moreover, we are interested in whether the size of trade unions affects the labor share. Labor income share has experienced a declining trend since mid-1970s, and the empirical evidence found little if no correlation of this decline to general labor market institutions. We found, however, that some institutions are correlated to the downward trend, depending on the welfare system adopted. Moreover, many countries saw an upsurge of their labor share after the burst of the financial crisis. We also discuss evidence of whether the crisis weakened or reinforced the effect of some policies in sustaining the labor share

    Double poroelasticity derived from the microstructure

    Get PDF
    We derive the balance equations for a double poroelastic material which comprises a matrix with embedded subphases. We assume that the distance between the subphases (the local scale) is much smaller than the size of the domain (the global scale). We assume that at the local scale both the matrix and subphases can be described by Biot’s anisotropic, heterogeneous, compressible poroelasticity (i.e. the porescale is already smoothed out). We then decompose the spatial variations by means of the two-scale homogenization method to upscale the interaction between the poroelastic phases at the local scale. This way, we derive the novel global scale model which is formally of poroelastic-type. The global scale coefficients account for the complexity of the given microstructure and heterogeneities. These effective poroelastic moduli are to be computed by solving appropriate differential periodic cell problems. The model coefficients possess properties that, once proved, allow us to determine that the model is both formally and substantially of poroelastic-type. The properties we prove are a) the existence of a tensor which plays the role of the classical Biot’s tensor of coefficients via a suitable analytical identity and b) the global scale scalar coefficient M¯ is positive which then qualifies as the global Biot’s modulus for the double poroelastic material

    Micromechanical analysis of the effective stiffness of poroelastic composites

    Get PDF
    Within this work we investigate the role that the microstructure of a poroelastic material has on the resulting elastic parameters. We are considering the effect that multiple elastic and fluid phases at the same scale (LMRP model (L. Miller and R. Penta, 2020)) have on the estimation of the materials elastic parameters when compared with a standard poroelastic approach. We present a summary of both the LMRP model and the comparable standard poroelastic approach both derived via the asymptotic homogenization approach. We provide the 3D periodic cell problems with associated boundary loads that are required to be solved to obtain the effective elasticity tensor for both model setups. We then perform a 2D reduction of the cell problems, again presenting the 2D boundary loads that are required to solve the problems numerically. The results of our numerical simulations show that whenever investigating a poroelastic composite material with porosity exceeding 5% then the LMRP model should be considered more appropriate in incorporating the structural details in the Young’s moduli E1 and E3 and the shear C44. Whenever the porosity exceeds 20% it should also be used to investigate the shear C66. We find that for materials with less than 5% porosity that the voids are so small that a standard poroelastic approach or the LMRP model produce the same results

    Homogenized balance equations for nonlinear poroelastic composites

    Get PDF
    Within this work, we upscale the equations that describe the pore-scale behaviour of nonlinear porous elastic composites, using the asymptotic homogenization technique in order to derive the macroscale effective governing equations. A porous hyperelastic composite can be thought of as being comprised of a matrix interacting with a number of subphases and percolated by a fluid flowing in the pores (which is chosen to be Newtonian and incompressible here). A general nonlinear macroscale model is derived and is then specified for a particular choice of strain energy function, namely the de Saint-Venant function. This leads to a macroscale system of PDEs, which is of poroelastic type with additional terms and transformations to account for the nonlinear behaviour of the material. Our new porohyperelastic-type model describes the effective behaviour of nonlinear porous composites by prescribing the stress balance equations, the conservation of mass and Darcy’s law. The coefficients of these macroscale equations encode the detailed microstructure of the material and are to be found by solving pore-scale differential problems. The model reduces to the following limit cases of (a) linear poroelastic composites when the deformation gradient approaches the identity, (b) nonlinear composites when there are no pores and (c) nonlinear poroelasticity when only the matrix–fluid interaction is considered. This model is applicable when the interactions between various hyperelastic solid phases occur at the pore-scale, as in biological tissues such as artery walls, the myocardium, lungs and liver

    Effective balance equations for electrostrictive composites

    Get PDF
    This work concerns the study of the effective balance equations governing linear elastic electrostrictive composites, where mechanical strains can be observed due to the application of a given electric field in the so-called small strain and moderate electric field regime. The formulation is developed in the framework of the active elastic composites. The latter are defined as composite materials constitutively described by an additive decomposition of the stress tensor into a purely linear elastic contribution and another component, which is assumed to be given and quadratic in the applied electric field when further specialised to electrostrictive composites. We derive the new mathematical model by describing the effective mechanical behaviour of the whole material by means of the asymptotic (periodic) homogenisation technique. We assume that there exists a sharp separation between the micro-scale, where the distance among different sub-phases (i.e. inclusions and/or fibres and/or strata) is resolved, and the macro-scale, which is related to the average size of the whole system at hand. This way, we formally decompose spatial variations by assuming that every physical field and material property are depending on both the macro-scale and the micro-scale. The effective governing equations encode the role of the micro-structure, and the effective contributions to the global stress tensor are to be computed by solving appropriate linear-elastic-type cell problems on the periodic cell. We also provide analytic formulae for the electrostrictive tensor when the applied electric field is either microscopically uniform or given by a suitable multiplicative decomposition between purely microscopically and macroscopically varying components. The obtained results are consistently compared with previous works in the field, and can pave the way towards improvement of smart active materials currently utilised for engineering (possibly bio-inspired) purposes

    Up-To-Date Review About Minipuberty and Overview on Hypothalamic-Pituitary-Gonadal Axis Activation in Fetal and Neonatal Life

    Get PDF
    Minipuberty consists of activation of the hypothalamic-pituitary-gonadal (HPG) axis during the neonatal period, resulting in high gonadotropin and sex steroid levels, and occurs mainly in the first 3–6 months of life in both sexes. The rise in the levels of these hormones allows for the maturation of the sexual organs. In boys, the peak testosterone level is associated with penile and testicular growth and the proliferation of gonadic cells. In girls, the oestradiol levels stimulate breast tissue, but exhibit considerable fluctuations that probably reflect the cycles of maturation and atrophy of the ovarian follicles. Minipuberty allows for the development of the genital organs and creates the basis for future fertility, but further studies are necessary to understand its exact role, especially in girls. Nevertheless, no scientific study has yet elucidated how the HPG axis turns itself off and remains dormant until puberty. Additional future studies may identify clinical implications of minipuberty in selected cohorts of patients, such as premature and small for gestational age infants. Finally, minipuberty provides a fundamental 6-month window of the possibility of making early diagnoses in patients with suspected sexual reproductive disorders to enable the prompt initiation of treatment rather than delaying treatment until pubertal failure

    Hashimoto's Disease and Thyroid Cancer in Children: Are They Associated?

    Get PDF
    Hashimoto's thyroiditis (HT) is the most common cause of thyroid disease in children and adolescents. Along with significant modifications of thyroid function, HT in pediatric age can be accompanied by relevant thyroid structural alterations. Over time, benign thyroid nodules, carcinoma and, rarely, primary non-Hodgkin lymphoma can develop. However, the relationships between HT and neoplasms are poorly defined. The main aim of this paper is to discuss what is presently known regarding the coexistence of HT and thyroid tumors. Moreover, we attempt to define the pathogenesis of cancer development in children with HT. Literature analysis showed that despite its rarity and relatively promising prognosis, thyroid cancer is associated with HT. Although not all reasons for the coexistence of these diseases are clearly defined, children with HT should be considered at higher risk for thyroid cancer development. Strict correlations between high levels of serum TSH and anti-thyroid antibodies with cancer must be remembered. The same is true for the presence of nodules, especially if multiple nodules are present and ultrasonography and thyroid fine needle aspiration cytology should be promptly used in uncertain cases

    ARENA: An Approach for the Automated Generation of Release Notes

    Get PDF
    Release notes document corrections, enhancements, and, in general, changes that were implemented in a new release of a software project. They are usually created manually and may include hundreds of different items, such as descriptions of new features, bug fixes, structural changes, new or deprecated APIs, and changes to software licenses. Thus, producing them can be a time-consuming and daunting task. This paper describes ARENA ( A utomatic RE lease N otes gener A tor), an approach for the automatic generation of release notes. ARENA extracts changes from the source code, summarizes them, and integrates them with information from versioning systems and issue trackers. ARENA was designed based on the manual analysis of 990 existing release notes. In order to evaluate the quality of the release notes automatically generated by ARENA, we performed four empirical studies involving a total of 56 participants (48 professional developers and eight students). The obtained results indicate that the generated release notes are very good approximations of the ones manually produced by developers and often include important information that is missing in the manually created release notes

    The Application of Novel Research Technologies by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) Consortium

    Get PDF
    The deep waters of the open ocean represent a major frontier in exploration and scientific understanding. However, modern technological and computational tools are making the deep ocean more accessible than ever before by facilitating increasingly sophisticated studies of deep ocean ecosystems. Here, we describe some of the cutting-edge technologies that have been employed by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND; www.deependconsortium.org) Consortium to study the biodiverse fauna and dynamic physical-chemical environment of the offshore Gulf of Mexico (GoM) from 0 to 1,500 m
    corecore