
0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

1

ARENA: An Approach for the Automated
Generation of Release Notes

Laura Moreno, Member, IEEE, Gabriele Bavota, Member, IEEE, Massimiliano Di Penta, Member, IEEE,
Rocco Oliveto, Member, IEEE, Andrian Marcus, Member, IEEE, Gerardo Canfora

Abstract—Release notes document corrections, enhancements, and, in general, changes that were implemented in a new release of
a software project. They are usually created manually and may include hundreds of different items, such as descriptions of new
features, bug fixes, structural changes, new or deprecated APIs, and changes to software licenses. Thus, producing them can be a
time-consuming and daunting task. This paper describes ARENA (Automatic RElease Notes generAtor), an approach for the
automatic generation of release notes. ARENA extracts changes from the source code, summarizes them, and integrates them with
information from versioning systems and issue trackers. ARENA was designed based on the manual analysis of 990 existing release
notes. In order to evaluate the quality of the release notes automatically generated by ARENA, we performed four empirical studies
involving a total of 56 participants (48 professional developers and 8 students). The obtained results indicate that the generated
release notes are very good approximations of the ones manually produced by developers and often include important information that
is missing in the manually created release notes.

Index Terms—Release notes, Software documentation, Software evolution

F

1 INTRODUCTION

R ELEASE notes summarize the main changes that oc-
curred in a software system since its previous release,

such as, the addition of new features, bug fixes, changes to
licenses under which the project is released, and, especially
when the software is a library used by others, relevant
changes at code level. Different stakeholders might benefit
from release notes. Developers, for example, use them to
learn what has changed in the code, which features have
been implemented and which features are left for future
releases, which bugs have been fixed and which ones are
still open, whether or not the latest release introduced new
legal constraints, etc. Similarly, integrators, who are using a
library in their code, use the library release notes to decide
whether or not such a library should be upgraded to a new
release. Finally, end users read the release notes to decide
whether it would be worthwhile to install a new release of
a software (e.g., a mobile app).

In general, release notes are produced manually. Ac-
cording to a survey we conducted among open-source and
professional developers (see Section 4.2), creating a release
note by hand is a difficult and effort-prone activity that can
take as much as eight hours. Some issue trackers partially
support this task by generating simplified release notes

• L. Moreno and A. Marcus are with the University of Texas at Dallas,
Richardson, TX, USA.
E-mail: lmorenoc, amarcus@utdallas.edu

• G. Bavota is with the Free University of Bozen-Bolzano, Bolzano, Italy.
E-mail: gabriele.bavota@unibz.it

• M. Di Penta and G. Canfora are with the University of Sannio, Benevento,
Italy.
E-mail: dipenta, canfora@unisannio.it

• R. Oliveto is with the University of Molise, Pesche (IS), Italy.
E-mail: rocco.oliveto@unimol.it

Manuscript received April 19, 2005; revised September 17, 2014.

(e.g., the Atlassian OnDemand release note generator1), yet such
notes are limited to list closed issues that developers have
manually associated with a release.

This paper proposes ARENA (Automatic RElease Notes
generAtor), an automated approach for the generation of
release notes. ARENA identifies changes occurred in the
commits performed between two releases of a software
project, such as, structural changes to the code, upgrades
of external libraries used by the project, and changes in
the licenses. Then, ARENA summarizes the code changes
through an approach derived from code summarization
[28], [38]. These changes are linked to information that
ARENA extracts from commit notes and issue trackers,
which is used to describe fixed bugs, new features, and open
bugs related to the previous release. Finally, the release note
is organized into categories and presented as a hierarchical
and interactive HTML document, where details on each
item can be expanded or collapsed, as needed.

Currently, there is no industry-wide standard on the
content and format of release notes, hence software com-
panies adopt independent release note guidelines based on
their own information and technical needs. For this reason,
ARENA has been designed based on the manual analysis
of 990 project release notes identifying what elements they
typically contain. Also, it is important to point out that the
release notes generated by ARENA include information that
is useful mainly to developers and integrators, rather than to
end-users.

From an engineering standpoint, ARENA leverages ex-
isting approaches for code summarization and for linking
code changes to issues; yet, ARENA is novel and unique
for two reasons: (i) it generates summaries and descriptions

1. http://tinyurl.com/atlassian-jira-rn. All URLs last verified on
06/10/2015.



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

2

of code changes at different levels of granularity than what
was done in the past; and (ii) for the first time, it combines
code analysis, summarization, and mining approaches to-
gether to address the problem of release note generation.
To the best of our knowledge, no current tool or approach
automatically generates release notes with the rich content
of ARENA’s release notes. Our conjecture is that such a rich
content (describing, for example, the code that was changed
to implement a bug fix or feature) of the release note, can be
beneficial to developers during evolutionary tasks.

In order to evaluate ARENA, we performed four differ-
ent empirical studies evaluating the release notes generated
by ARENA from complementary points of view.

This paper extends our previous work on the automatic
generation of release notes [29]. In particular, novel contri-
butions of this paper are the following:

• We developed and publicly released ARENA2, a tool
implementing the approach for the automatic genera-
tion of release notes described in our previous work
[29].

• Thanks to the tool availability, we performed a six-
month in-field study, where a team of developers from a
software company used ARENA to generate the release
notes of a medical software system. This study allowed
us to investigate the usefulness of ARENA and the
quality of its release notes within an industrial setting,
in which developers used it in their everyday routine
for a substantial time period.

Replication package. A replication package is available
online3. It includes: (i) the complete results of the survey;
(ii) the code summarization templates used by ARENA; (iii)
all the generated release notes; and (iv) the material and
working data sets of the four evaluation studies.

Paper structure. Section 2 reports results of our initial
survey to identify requirements for generating release notes.
Section 3 introduces ARENA, while Section 4 presents the
four evaluation studies and their results. The threats that
could affect the validity of the results achieved are discussed
in Section 5. Finally, Section 7 concludes the paper and
outlines directions for future work, after a discussion of the
related literature (Section 6).

2 WHAT DO RELEASE NOTES CONTAIN?
Since no industry-wide common standards exist for writing
release notes, different communities produce release notes
according to their own guidelines. In order to define the con-
tent and structure of the ARENA-generated release notes,
we performed an exploratory study aimed at understanding
the structure and content of existing release notes. Specifi-
cally, we manually inspected 990 release notes from 55 open
source projects (see Table 1) to analyze and classify their con-
tent. Note that to improve the generalizability of the release
notes generated by ARENA, we considered projects from
different open-source communities. The analyzed notes be-
long to 608 releases of 41 open-source projects from the
Apache ecosystem (e.g., Ant, log4j, etc.), and 382 releases
of 14 open-source projects developed by other communities
(e.g., jEdit, Selenium, Firefox, etc.).

2. https://seers.utdallas.edu/ARENA/
3. http://utdallas.edu/∼lmorenoc/research/tse2015-arena/

TABLE 1
Systems used in the exploratory study.

Project type Software project Number of releases
Abdera 8
Accumulo 7
Ant 16
Cayenne 65
Click 45
Commons Attributes 2
Commons BeanUtils 13
Commons Betwixt 5
Commons BSF 6
Commons Chain 2
Commons CLI 2
Commons Codec 10
Commons Collections 9
Commons Compress 5
Commons Configuration 7
Commons Daemon 15
Commons DBCP 4
Commons DbUtils 4
Commons Digester 15
Commons Discovery 3
Commons Email 3
Derby 20
Geronimo Eclipse 10
Ivy 36
JAMES 15
Karaf 21
Lenya 1
log4j 60
log4net 11
Lucene Core 51
Maven 28
MINA 3
MyFaces 3
OpenJPA 12
Pivot 8
POI 22
Qpid 7
Regexp 5
Santuario 10
ServiceMix 21

Open-source
(Apache
community)

ZooKeeper 18
Subtotal # of projects 41 608

FindBugs 52
Firefox 21
Google Web Toolkit 41
GTGE 3
Hibernate 16
ImageJ 63
jEdit 31
JHotDraw 4
JUnit 10
Netty 50
ProGuard 31
Selenium Java 34
SLF4J 12

Open-
source (other
communities)

Struts 14
Subtotal # of projects 14 382

Total # of projects 55 990

Release notes are usually presented as a list of items,
each one describing some types of changes. Table 2 reports
the 17 types of changes we identified as most frequently
included in release notes, the number of release notes con-
taining such information, and the corresponding percent-
age. Note that Code Components may refer to classes, meth-
ods, or instance variables. The raw data including detailed
information for each one of the 990 analyzed release notes
can be found in our replication package.

Bug fixes stand out as the most frequent item included in
the release notes (in 888 release notes—90% of our sample).
Typically, the information is reported as a simple bullet
list containing for each fixed bug, its ID and a very short
summary (often the bug’s title as stored in the bug tracker).



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

3

TABLE 2
Contents of the 990 release notes.

Content Type #Rel. Notes %
Fixed Bugs 888 90%
New Features 455 46%
New Code Components 424 43%
Modified Code Components 397 40%
Modified Features 262 26%
Refactoring Operations 206 21%
Changes to Documentation 200 20%
Upgraded Library Dep. 157 16%
Deprecated Code Components 97 10%
Deleted Code Components 88 9%
Changes to Config. Files 84 8%
Changes to Code Components Visibility 72 7%
Changes to Test Suites 70 7%
Known Issues 64 6%
Replaced Code Components 47 5%
Architectural Changes 29 3%
Changes to Licenses 18 2%

For example, in the release note of Apache Lucene 4.0.0, the
LUCENE-4310 bug fix is reported as follows:

LUCENE-4310: MappingCharFilter was failing to
match input strings containing non-BMP Unicode
characters.

Other frequently reported changes in release notes are
new features (46%) and new code components (43%). These
two types of changes are often found together, explaining
what code components were added to implement the new
features. Also, when available, the ID of the issue where
developers discussed the implementation of the new feature
is reported. An example of such an item reported in the
Apache Lucene 4.0.0 release note is:

LUCENE-1888: Added the option to store payloads in
the term vectors (IndexableFieldType.storeTermVector-
Payloads()). Note that you must store term vector posi-
tions to store payloads.

Modified code components (i.e., classes, methods, fields,
parameters) are also frequently reported (40%). Note that we
include here all cases where the release notes report that a
code element has been changed, without specifying how. We
do not include here deprecated code components or changes
to code components’ visibility that are classified separately
(see Table 2).

Explanations of modified features are quite frequent
in release notes (26%) and are generally accompanied by
the code components that were added/modified/deleted to
implement the feature change. An example from the release
note of the Google Web Toolkit 2.3.0 (M1) is:

Updated GPE’s UIBinder editor (i.e., class UIBinder
of the Google Plug-in) to provide support for attribute
auto-completion based on getter/setters in the owner
type.

Refactoring operations are also included in release notes
(21%), generally as simple statements specifying the im-
pacted code components, e.g., “Refactored the WebDriverJs”—
from Selenium 2.20.0.

Changes in documentation are present in 20% of the
analyzed release notes, although, more often than not, they
are rather vaguely described with generic sentences like
“more complete documentation has been added” or “documen-
tation improvements”.

We also found: 157 release notes (16%) reporting up-
grades in the libraries used by the project (e.g., “The Deb

Ant Task now works with Ant 1.7”—from Jedit 4.3pre11);
97 (10%) reporting deprecated code components; and 88
(9%) including deleted code components (e.g., “Removed
GWTShell, an obsolete way of starting dev mode”—from Google
Web Toolkit 2.5.1 (RC1)).

Other changes performed in the new release are less
common in the analyzed release notes (see Table 2). We
must note that rarely summarized types of changes are not
necessarily less important than the frequently reported ones.
It may be the case that some types of changes occur less
frequently than others, hence they are reported less. For
example, changes to licenses are generally rare and thus,
only 18 release notes (2%) contain this information. We do
not equate frequency with importance. Future work will
answer the importance question separately.

Based on the results of this survey and on our assess-
ment of what can be automatically extracted from available
sources of information (i.e., release archives, versioning sys-
tems, and issue trackers), we have formulated requirements
for what ARENA should include in release notes:

1) a description of fixed bugs, new features, and improve-
ment of existing features, complemented with a de-
scription of what was changed in the code (i.e., classes,
methods, fields, parameters, etc.);

2) a summary of other source code changes, including (i)
description of code changes (e.g., added, removed, and
modified code elements, or changes to their visibility);
(ii) deprecated methods/classes; and (iii) refactoring
operations;

3) changes to the libraries used by the system;
4) changes to licenses and documentation; and
5) open issues.

In the subsequent sections we use the term “item” to
refer to elements belonging to the above listed categories
of changes and reported in the release note generated by
ARENA (e.g., a fixed bug described in the release note, a
refactoring operation, etc.).

Note that in the current version of ARENA we did
not consider changes to the high-level system architecture,
because existing architecture recovery approaches (e.g., [19],
[22], [25]) usually require manual effort to produce usable
results. Also, as it will be detailed in Section 3, we do not
capture all changes performed to build files, only those for
which it is possible to provide a specific rationale (i.e., the
change in dependencies).

3 ARENA OVERVIEW

In a nutshell, ARENA works as depicted in Fig. 1. The
process to generate release notes for a release rk is composed
of four main steps.

During the first step (Section 3.1), the Change Extractor is
used to capture changes performed between releases rk−1

and rk in terms of: (i) fine-grained source code changes
(e.g., changes to methods visibility, deprecated classes, new
classes, etc.); (ii) changes to libraries; (iii) changes to doc-
umentation; and (iv) changes to licenses. All these fine-
grained source code changes are then linked to information
extracted from the versioning system (e.g., commit-id, date,
etc.).



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

4

Change 
Extractor

Issue 
Tracker

Versioning 
System

Select bundles for 
releases rk-1 and rk

bundle rk-1 bundle rk

Code Change 
Summarizer

Commits-
Issues Linker

Issue 
Extractor

Information 
Aggregator

HTML

Release
Note

Legend
Information Flow
Dependency

fine-grained 
structural 
changes linked 
to commits

changes to 
libraries

changes to 
documentation

changes to 
licenses

summarized 
structural 
changes linked 
to commits

summarized 
structural 
changes linked 
to issues

Fig. 1. Overview of the ARENA approach.

In the second step (Section 3.2), the Code Change Sum-
marizer describes the fine-grained changes captured by the
Change Extractor, with the goal of obtaining a higher-level
view of what changed in the code. To this aim, the struc-
tural changes are hierarchically organized and prioritized
to select the changes to be included in the summaries. An
itemized, natural-language description is generated for the
top changes. The summarized structural code changes are
then linked to the extracted commit information from the
previous step.

In the third step (Section 3.3), the Commit-Issue Linker
uses the Issue Extractor to mine information (e.g., fixed bugs,
new features, improvements, etc.) from the issue tracker
of the project to which rk belongs. Each fixed bug, imple-
mented new feature, and improvement is linked to the code
changes performed between releases rk−1 and rk. Therefore,
in a generated release note, the summarized structural code
changes represent what changed in the new release, while
the information extracted from the issue tracker explains
why the changes were performed.

Finally, in the fourth step (Section 3.4), the extracted
information is provided as input to the Information Ag-
gregator. This component is in charge of organizing the
extracted information as a hierarchy and creating an HTML
version of the release note for rk, where each item can be
expanded/collapsed to reveal/hide its details. An example
of a release note generated by ARENA can be found at
http://tinyurl.com/arena-lucene-4-0.

3.1 Extraction of Changes

ARENA extracts code changes, as well as changes to other
entities, from two different sources: (i) the versioning
system; and (ii) the source archives of the releases to be
compared.

3.1.1 Identification of the Time Interval to be Analyzed
ARENA aims at identifying the subset of commits that
pertains to the release for which the release note needs
to be generated, say release rk. Intuitively, the simplest
way to analyze code changes occurring between the two
releases rk−1 and rk is to analyze the content of the source
distribution archives of the two releases. Such analysis
would enable the identification of structural changes, while
it does not allow to properly link source code changes
onto their rationale (to be mined from the issue tracker).
In this sense, we opt for analyzing the commits in the
versioning system, which contain each change performed
to the system. To identify changes between the releases
rk−1 and rk, we consider all commits occurred—in the
main trunk of the versioning system—starting from the
rk−1 release date tk−1, until the rk release date tk. Note
that these dates could be approximations, as developers
could start working on the release rk+1 even before tk is
issued, i.e., changes committed before tk could belong to
the release rk+1 and not to the release rk. It is worth noting
that such a date approximation is needed only if dates are
not specified by an end-user of ARENA. Indeed, in a real
usage scenario (as explained in Section 3.5), a developer in
charge of creating a release note using ARENA can simply
provide the best time interval to analyze.

3.1.2 Analysis of Code Changes
Once the commits of interest are identified, ARENA’s
Change Extractor analyzes them using a code analyzer devel-
oped in the context of the Markos EU project4. The analyzer
parses the source code using the srcML toolkit [11] and
extracts a set of facts concerning the files that have been
added, removed, and changed in each commit. Information

4. http://www.markosproject.eu



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

5

on the commits performed between the releases rk−1 and rk
is extracted from the versioning system (e.g., git, svn). Given
the set of files in a commit, the following kinds of changes
are identified:

• Files added, removed, and moved between packages;
• Classed added, removed, renamed, or moved between

files.
• Methods added, removed, renamed, or moved between

classes;
• Methods changed, i.e., changes in the signature, visibil-

ity, source code, or set of thrown exceptions;
• Instance variables added, removed, and with visibility

changes;
• Deprecated classes, methods, and instance variables.

Added and removed files. These changes are the easiest to
identify, since they are explicitly reported in the versioning
system log. For example, the commit:

F.java,<commit_id>,<date>,<author>,A,
<commit message>

indicates that the file F.java has been added to the
repository, as suggested by the literal A in the fifth value of
the commit. This value explicitly marks the type of change
performed on the file object of the commit. Other possible
literals for this value are D, indicating that the file has been
deleted, and M, indicating its modification.

Moved files. A file F.java is considered as moved
between two packages when a commit contains two
operations related to F.java, one reporting D as type of
change (i.e., the file has been deleted from its previous
folder) and the other one reporting A as type of change (i.e.,
the file has been added to a new folder).

Added, removed, renamed, and moved classes. Added
and removed classes are identified by comparing the
content of each source code file in the commit before and
after the commit was performed. Classes that have been
renamed or moved between files are identified through a
metric-based fingerprinting approach [3], [17], where a class
is characterized by a set of metrics or fingerprint that allows
to trace the class when its name or location change.

Added, removed, renamed, and moved methods. Similar
to the previous case, added and removed methods are
identified by comparing the content of each source code
file before and after the analyzed commits. Likewise,
renamed and moved methods are detected by using the
fingerprinting-based approach.

Changed methods. For each method found in the modified
files of the commit under analysis, a comparison between
the before- and after-commit versions of the source code
of the method is performed. Through this comparison,
ARENA is able to identify: (i) changes to the method
visibility (e.g., a method converted from private to public);
(ii) changes to the method signature (e.g., parameters
added/removed, changes to the exceptions thrown by the
method, etc.); and (iii) changes to the method body.

Added, removed and changed instance variables. These
changes are captured by comparing before- and after-
commit versions of the instance variables of each class
contained in modified code files.

Deprecated classes, methods, and instance variables.
Deprecation of code elements is identified by detecting new
@Deprecated Java tags on classes, methods, and instance
variables in the modified code files of the commit under
analysis.

All the previous changes are automatically linked to the
commit in which they have been performed, by storing:
(i) the commit-id in which the change occurred; (ii) the
author of the change; (iii) the date of the change; and (iv)
the commit message describing the change.

3.1.3 Analysis of Licensing Changes

In order to identify license changes, ARENA’s Change
Extractor analyzes the content of the source distribution of
rk−1 and rk, extracting all source files (i.e.,.java) and all
text files (i.e.,.txt). Then, it uses the Ninka license classifier
[16] to identify and classify licenses contained in such files.
Ninka uses a pattern-matching based approach to identify
statements characterizing the various licenses and, given
any text file (including source code files) as input, it outputs
the license type (e.g., GPL) and its version (e.g., 2.0) with a
95% precision. ARENA highlights a license change in rk if:
(i) a new file declaring a previously unused license is added
in rk, (ii) a file changes license type and/or version between
rk−1 and rk, or (iii) a file that declared a license li in rk−1 is
deleted in rk and no other files declaring li are present in rk.

3.1.4 Identification of Changes in Documentation

This analysis is done on the release archives of rk−1 and rk.
Although release archives can contain any kind of documen-
tation, we only focus on changes to documentation describ-
ing source code entities. ARENA identifies documentation
changes using the approach described below:

1) Identify text files, i.e.,.pdf, .txt, .rdf, .doc, .docx,
and .html, and extract the textual content from them
using the Apache Tika5 library.

2) If a text file (say doci) has been added in rk, then verify
whether it references code file names, class names, and
method names. We use a pattern matching approach
similar to the one proposed by Bacchelli et al. [4]. If such
entities are found in a file, then check whether these
files, classes, or methods have been added, removed,
or changed in the source code, so that ARENA can
generate an explanation of why the documentation was
added, e.g., if the added text file contains a reference to
class Cj added in rk, ARENA describes the change as
“The file doci has been added to the documentation to reflect
the addition of class Cj”.

3) If a text file (say doci) has been removed in rk, then
check if it references deleted methods, classes, or code

5. http://tika.apache.org



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

6

files. If that is the case, ARENA generates an explana-
tion “The file doci has been deleted from the documenta-
tion due to the removal of <involved code components>
from the system”.

4) If a text file has been modified between rk−1 and rk,
we use a similar approach as above, but we search for
references to code entities only in the portions of the
text file that were changed.

Note that ARENA is reporting changes in documenta-
tion artifacts in a slightly different way compared to what
we observed in the release notes manually analyzed in the
context of the study reported in Section 2. In particular, we
observed that developers often describe changes to docu-
mentation at a very high level (e.g., “more complete doc-
umentation has been added”). Instead, ARENA only looks
for changes related to documentation files linked to code
components. A simplistic approach, more in line with the
findings of our exploratory study (Section 2), would have
been to describe changes to all textual artifacts (i.e.,.pdf,
.txt, .rdf, etc.) despite their linkage to code elements.
However, as we tested this approach we observed that it
resulted in the generation of some irrelevant information.
This is because software repositories often contain textual
files (e.g., the project website, advertising material, list of
contributors) that are not relevant when describing changes
in a newly issued release. For this reason, we decided
to only consider textual documents explicitly referring to
code elements, since those are the ones likely representing
relevant documentation artifacts.

3.1.5 Identification of Changes in the Used Libraries
ARENA’s Change Extractor analyzes whether: (i) rk uses
new libraries compared to rk−1; (ii) libraries are no longer
required; and (iii) libraries have been upgraded to new
releases. The analysis is performed in two steps:

1) Parse the files describing the inter-project dependen-
cies. In Java projects, these are usually property files
(libraries.properties or deps.properties) or
Maven Project Object Model (POM) files (pom.xml).
The information contained in such files allows ARENA
to detect the libraries used in both releases rk and
rk−1. Specifically, ARENA detects the name and used
versions of each library, e.g., ant v. 1.7.1.

2) Identify the jar files contained in the two release
archives and—by means of regular expressions—ex-
tracting name and version from each jar file name,
e.g.,ant_1.7.1.jar is mapped to library ant v. 1.7.1.

With the list of libraries used in both releases, ARENA
verifies and reports if: (i) new libraries have been added
in rk; (ii) libraries are no longer used in rk; or (iii) new
versions of libraries previously used in rk−1 are used in rk.

3.1.6 Identification of Refactoring Operations
ARENA’s Change Extractor also identifies refactoring opera-
tions performed between the releases rk−1 and rk, by using
two complementary sources of information:

1) Refactoring operations documented in the commit
notes. Such operations are identified by matching reg-
ular expressions in commit notes—e.g.,refact, renam—as
done in previous work [10], [36].

2) Class/method renaming and moving (those not already
identified by means of their commits using the heuris-
tic above). Such refactoring changes are identified by
means of fingerprinting analysis.

In principle, ARENA could describe other kinds of refac-
toring operations by integrating refactoring identification
tools like RefFinder [33]. For the time being, we prefer to
keep a light-weight approach.

3.2 Summary of Code Changes

The fine-grained code changes captured by the Change Ex-
tractor are provided to the Code Change Summarizer to obtain
a higher-level view of what changed in the code (see Fig. 1).
ARENA’s Code Change Summarizer follows three steps in
order to generate such a view: (i) it hierarchically organizes
the code changes; (ii) it selects the changes to be described;
and (iii) it generates a set of natural-language sentences for
the selected changes.

In the first step, a hierarchy of changed artifacts is
built by considering the kind of artifact (i.e., files, classes,
methods, or instance variables) affected by each change. In
Object-Oriented (OO) software systems, files contain classes,
which in turn consist of methods and instance variables.
Therefore, changes are grouped based on these relation-
ships, e.g., changed methods and instance variables that
belong to the same class are grouped under that class.

In the second step, ARENA analyzes the hierarchy of
changed artifacts in a top-down fashion, to select the code
changes to be included in the summaries, in the following
way:

1) If a file is associated to class-level changes,
then the class changes are selected instead of
the file changes, since in OO programming lan-
guages classes are the main decomposition unit,
rather than source files. For example, consider
the new file SearcherLifetimeManager.java in
Apache Lucene 3.5. Together with this file, the
SearcherLifetimeManager class was added. This
class has a specific role within the system that is very
likely to provide more information than the file.

2) If the change associated to a class is its addition or
deletion, then such change is selected instead of any
other change in the class (e.g., the addition/deletion
of its methods). Otherwise, changes on the visibility
or deprecation of the class are selected. If the change
associated to a class is its modification, then the changes
associated to instance variable and method level are
selected.

3) If the change associated to an instance variable or
method is its addition, deletion, renaming, or depre-
cation, then such change is selected. Changes to pa-
rameters, return types, or exceptions are marked to be
excluded.

Finally, in the third step, the Code Change Summarizer
generates a natural language description of the selected
changes, presented as a list of paragraphs. For this, ARENA
defines a set of templates according to the kind of artifact
and kind of change to be described. In this way, one sentence
is generated for each change. For example, an added file is



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

7

Fig. 2. Summary of the SearcherLifetimeManager class from
Lucene 3.5.

described as New file <file name>, whereas a deleted file is
reported as File <file name> has been removed.

As stated above, the focus of OO systems is on classes.
Thus, for added classes ARENA provides more detailed sen-
tences than for other changes, by adapting JSummarizer [30],
a tool that automatically generates natural-language sum-
maries of classes. Each summary consists of four parts: (i) a
general description based on the superclass and interfaces of
the class; (ii) a description of the role of the class within the
system; (iii) a description of the class behavior based on the
most relevant methods; and (iv) a list of the inner classes,
if they exist. We adapted JSummarizer by modifying some
of the original templates and by improving the filtering
process when selecting the information to be included in
the class summary. For example, when filtering the elements
that interact with the analyzed class, we excluded the classes
in the package java.lang, since they are invariably used
in every Java system. Fig. 2 shows part of an automatically
generated summary for the SearcherLifetimeManager
class from Lucene 3.5.

Deleted classes are reported in a similar way as deleted
files. Changes regarding the visibility of a class are described
by providing the added or removed specifier, e.g., Class
<class name> is now <added specifier>. The description of
modified classes consists of sentences reporting methods
and instance variables added, deleted or modified. For
example, a change in a method’s name is reported as: Method
< old method name> was renamed as <new method name>.

The generated sentences are concatenated according
to the priority previously assigned to the changes. At this
point, there may be some redundancies due to similar
sentences reporting the same type of change on same-level
artifacts. For example, two or more methods could be
removed from the same class or, as another example, the
visibility of a set of classes could change to the same level.
ARENA groups similar changes in single sentences to avoid
text redundancies, e.g., Methods <method name1>, . . . , and
<method namen> were removed from <class name>, rather
than list them one at a time. A complete list of the templates
that ARENA uses to generate the text descriptions is
available in our replication package.

3.3 Extraction of Issues and Linkage to Commits
ARENA uses the versioning system to extract various kinds
of changes to source code and other system entities, i.e., to
explain what in the system has been changed. In addition, it
relies on the issue tracker to extract change descriptions, i.e.,
to explain why the system has been changed. To this aim,
ARENA’s Issue Extractor (see Fig. 1) extracts the following
type of issues from the issue tracker:

• Issues describing bug fixes: Issues with type=“Bug”, sta-
tus=“Resolved” or “Closed”, resolution=“Fixed”, and res-
olution date included in the [tk−1, tk] period.

• Issues describing new features: Same as above, but consid-
ering issues with type=“New Feature”.

• Issues describing improvements: Same as for bug fixes, but
considering issues with type=“Improvement”.

• Open issues. Any issue with status=“Open” and open
date in the period [tk−1, tk].

Note that open issues are collected to present in the
release note rk’s Known Issues. Based on the fields described
above, ARENA has been implemented for the Jira issue
tracker. However, it can be extended to other issue trackers
(e.g.,Bugzilla), using the appropriate, available fields. Note
that sometimes fields classifying issues as bug fix/new
feature/enhancement are not fully reliable [2], [20]. In such
cases, the respective elements of the release notes will be
inaccurate, as ARENA does not verify the correctness of the
classifications.

Once the issues are extracted, they are linked to commits.
Different approaches can be used to link issues to commits.
One of them is the approach by Fischer et al. [15], based
on regular expressions matching the issue ID in the commit
note. This approach, however, might produce incomplete
results in some cases [5], especially when analyzing new
features. We complement this approach by using a re-
implementation of the ReLink approach defined by Wu et
al. [40], which considers the following constraints when
mapping an issue onto a commit:

1) Committer/author and issue tracking contributor matching.
The committer in the versioning system or the author of
the commit (available in git) must have participated in
the discussion on the issue, i.e., the committer/author
must match with an issue tracking contributor. Note
that, to match committer/author onto issue tracker
contributors, we match email addresses and, when
this fails, we use approximate name matching [7],
[9], e.g., Max Di Penta matches M. Di Penta. For the
Jira issue tracker, we found that the user ID matches
the first part of the email used in git, e.g., wherever
dipenta@unisannio.it was used in git the corresponding
Jira ID is dipenta.

2) Time interval. The time interval between the com-
mit and the last comment posted by the same au-
thor/contributor on the issue tracker must be less than
seven days, as suggested by Wu et al. [40]. We compute
the time interval as the difference between the commit
timestamp and the timestamp of the last comment
posted by the same author.

3) Textual similarity between the commit and the issue. The
textual similarity between the commit note and the
last comment referred above must be greater than a
threshold. We compute the textual similarity based on
Vector Space Model (VSM) [6], after removing stop
words, splitting compound identifiers using camel case,
and the Porter stemming [32]. We consider as valid
links those having a cosine similarity greater than 0.7.
This threshold has been set by manually analyzing the
linking approach on two projects (i.e., Apache Com-
mons IO and JBoss-AS) not used in our evaluation, and



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

8

it can be easily changed if needed.

3.4 Generation of the Release Note
ARENA’s Information Aggregator is in charge of building the
release note as an HTML document.

The changes are presented in a hierarchical structure
consisting of the categories from the ARENA requirements
defined in Section II and items summarizing each change
(see Fig. 3 footnoteNote that the [...] in Fig. 3 have been
added to fit the image and are not part of ARENA’s release
note.). Specifically, the release notes generated by ARENA
are structured as follows:

Change category
i. Single change overview [more info]

◦ Structural change description
where:

• A change category represents a high-level type of infor-
mation grouping together similar items. The category
is generally defined by the type of issue a change is
linked to, i.e., fixed bugs, new features, or improvements.
Code changes that are not mapped to any of the issues
extracted from the issue tracker (e.g., small changes that
were not discussed among developers) are grouped
based on the type of change into: added components,
deleted components, modified components, deprecated compo-
nents, changes to the visibility of components, or refactored
components. Possible change categories are also: docu-
mentation changes, license changes, and open issues. Each
change category in the generated release note can be
expanded to see its list of items (i.e., changes belonging
to it). Such changes can be represented as a single change
overview or as a structural change description.

• A single change overview is only provided for changes
that are linked to an issue. It consists of the issue id
linked to the corresponding entry in the issue tracker
and a short description of the change as extracted
from the issue’s summary. The single change overview
can be further expanded (by clicking on the “more
info” link) to access the structural change details level,
which describes how software artifacts have been im-
pacted by the change (e.g., which code components
have been added, deleted, and modified to implement
the change).

• A structural change description reports the details behind
the implementation of a change and is available for all
changes, both those linked to or not linked to an issue.
It could refer to summarized source code changes, list
of documentation artifacts added/deleted/modified,
added/removed/upgraded dependencies, and artifacts
that underwent changes in licenses.

Complete examples of the generated release notes can be
found in our replication package.

3.5 The ARENA web tool
ARENA has been implemented as a Web application and is
publicly available6. The current implementation of ARENA
requires the following input from the user:

6. https://seers.utdallas.edu/ARENA/

Fig. 3. An excerpt of the ARENA release note for Apache Commons
Codec 1.7.

• Release name. The name of the release for which note
will be generated, e.g., COMMONS-CODEC-1.7.

• Repository URL. The Internet address of the ver-
sioning system containing the code change history
of the project, e.g., https://github.com/apache/
commons-codec.git. Currently, ARENA supports
git-based code repositories.

• Issue tracker URL. The internet address of the issue
tracking system storing the list of issues associated
to the project, e.g., https://issues.apache.org/
jira/. Currently, ARENA supports issue repositories
managed with the Jira issue tracker.

• System name on the issue tracker. The unique name that
identifies the project in the issue tracker, e.g.,CODEC.

• Starting date. The date when the target release started
being implemented in dd-mm-yyyy format. This could
be the date of the first commit after the previous release,
e.g., 20-11-2011.

• Ending date. The date when the target release was
finished in dd-mm-yyyy format. This could be the
date of the last commit performed to the release, e.g.,
13-09-2012.

Notice that all the previous inputs are required by
ARENA for the generation of the release note. Once the user
fills in this information, only one button click is necessary
to generate the release note. Fig. 3 presents part of the
release note generated by ARENA for release 1.7 of Apache
Commons Codec.



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

9

4 EMPIRICAL EVALUATION

The goal of our empirical studies is to evaluate ARENA, with
the purpose of analyzing its capability to generate release
notes. The quality focus is the completeness, correctness and
usefulness (for developers) of the release notes generated
by ARENA. The perspective is of researchers, who want
to evaluate the effectiveness of automatic approaches for
generating release notes, and managers and developers,
who could consider using ARENA in their own company.

In the context of our empirical studies we aim at answer-
ing the following research questions:

• RQ1—Completeness: How complete are the release notes
generated by ARENA, compared with the ones produced
manually? In other words, our first objective is to check
whether ARENA is missing information that is con-
tained in manually-generated release notes.

• RQ2—Importance: How important is the content captured
by the release notes generated by ARENA, compared with the
ones produced manually? The aim is assessing develop-
ers’ perception of the various kinds of items contained
in manually and automatically-generated release notes.
We are interested in the usefulness of the additional
details produced by ARENA, which are missing in the
notes produced manually.

• RQ3—Applicability: To what extent can developers rely
on ARENA to generate the release notes of their ongoing
projects? The aim of this research question is to inves-
tigate the applicability of ARENA in the context of an
ongoing development project. Specifically, we are inter-
ested in understanding (i) to what extent developers
need to adapt the ARENA-generated notes in order to
meet their needs or to complement them with missing
information, and (ii) whether they perceive a benefit in
such a tool support.

To answer our research questions, we performed four
empirical studies having different settings and involving
different kinds of participants. Table 4 summarizes, for each
study, the number and kind of participants.

Study I aims at assessing the completeness of the ARENA
release notes as compared to the original ones available on
the systems’ websites (RQ1). We conducted this study on
eight open-source projects to ensure good generalizability
of our findings. In addition, since the goal of Study I does
not require high experience nor deep knowledge of the
application domain (as it will be clearer later), we mainly
involved students in such evaluation.

Study II aims at evaluating the importance of the items
present in the ARENA release notes and missing in the orig-
inal ones and vice versa (RQ2). In this case, the task assigned
to participants is highly demanding, so we conducted the
study only on two systems. Also, we involved experts—
including original developers of the analyzed projects—
since experience and knowledge of the systems were crucial.

Study III is a study conducted with industrial developers
and aimed at addressing both RQ1 and RQ2. Specifically,
in Study III we asked the original developers of a sys-
tem, named SMOS, to evaluate a release note generated
by ARENA and to compare it with one produced by the
development team leader.

Finally, Study IV is a six-month in-field study, where a
team of developers used ARENA to generate the release
notes of a medical software system, named OM, which
automates blood tests. This study addresses primarily RQ3,
but, incidentally, it also provides further evidence to RQ1

and RQ2 from the context of a live project.
Table 3 lists the system releases subject of our four

studies. In particular, it reports for each of them the name
of the system and the specific release considered in the
study, its size in terms of KLOC, and the number of com-
mits performed by the developers in the versioning system
while working on such a release. For example, in the time
period between the issuing of the release 2.1.2 and 2.1.3 of
Jackson-Core, 31 commits were performed in the versioning
system. These are the changes that ARENA considers while
generating the release notes. In addition, Table 3 also reports
the size of the release notes generated by ARENA for the
subject systems.

4.1 Study I—Completeness

The goal of this study is to assess the completeness of
ARENA release notes (RQ1) on several system releases,
ensuring external validity, both in terms of project diversity
and features to be included in the releases. The context of
Study I consists of: objects, i.e., automatically generated and
original release notes from eight releases of five open-source
projects (see Table 3); and participants evaluating the release
notes, i.e., one B.Sc., five M.Sc., one Ph.D. student, one
faculty, and two industrial developers. Before conducting
the study, we profiled the evaluators using a pre-study
questionnaire, aimed at collecting information about their
software development experience.

We manually looked in GitHub for releases of popular
open source projects to use in the context of our study.
In particular, a release rk was selected if it satisfied the
following criteria:

1) The original rk release note was available; and
2) The release bundles for rk and rk−1 (i.e., the archive

files packaging the software artifacts related to rk and
rk−1) were available;

3) The projects issuing rk had an issue tracker publicly
available.

We stopped the selection process after collecting twenty
releases belonging to eleven open source projects. Then,
given the limited number of participants (ten) taking part
in this study, we selected a subset of these releases such
that items from each change type (except for configuration
file and architectural changes—see Table 2) were present
in at least one of the release notes used in the study.
Eight releases from the projects Apache Cayenne, Apache
Commons Codec, Apache Lucene, Jackson-Core, and Janino
were selected (see Table 3).

4.1.1 Design and Planning

We distributed the original and the ARENA release notes to
the evaluators in such a way that each pair of release notes7

was evaluated by two participants. Having ten evaluators

7. By pair we mean the original and the generated release notes.



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

10

TABLE 3
System releases used in each study.

Study Name Releases KLOC # of commits Size of the ARENA release note
before release #Change categories #Change overviews #Change descriptions

Apache Cayenne 3.0.2 248 5,118 10 39 254
Apache Cayenne 3.1B2 232 2,550 9 45 280
Apache Commons Codec 1.7 17 267 8 24 110

Study I Lucene 3.5.0 184 2,869 8 68 249
Jackson-Core 2.1.0 21 170 8 11 65
Jackson-Core 2.1.3 22 31 6 6 11
Janino 2.5.16 26 612 7 22 141
Janino 2.6.0 31 408 7 10 129

Study II Apache Commons Collections 4.4.0ALPHA1 104 303 8 42 577
Lucene 4.0.0 192 758 10 58 677

Study III SMOS 2.0.0 23 109 4 12 31

Study IV OM

0.1 5 83 4 18 75
0.2 9 52 4 13 51
0.3 12 61 5 19 51
0.4 19 23 3 11 21

TABLE 4
Participants of the four studies.

Study Participants Experience
Study I 10 7 students, 1 faculty, 2 industrial developers
Study II 38 31 industrial and 7 open-source developers
Study III 5 industrial developers
Study IV 3 senior industrial developers

and eight pairs of release notes (evaluated by two partici-
pants each), it is clear that not all participants worked on
the same number of systems. This is due to the fact that the
release notes considered in this study had different sizes as
result of the different number of changes performed across
the pairs of releases rk−1, rk described by each of them. We
classified the release notes of the eight software systems into
three sets:

• Large: Apache Cayenne 3.0.2, Apache Cayenne 3.1B2,
and Lucene 3.5.0. Each of these releases was the result of
over 2,500 changes committed in the versioning system
(see Table 3).

• Medium: Janino 2.5.16, and Janino 2.6.0. Each of these
releases was the result of over 400 changes committed
in the versioning system.

• Small: Apache Commons Codec 1.7, Jackson-Core 2.1.0,
Jackson-Core 2.1.3. Each of these releases was the result
of less than 300 changes committed in the versioning
system.

We then distributed the ten participants as follows: six
participants worked on one large release note, each; two
worked on two medium release notes, each; and two worked
on three small release notes, each. This was done to balance
the workload among the participants while ensuring two
evaluators for each pair of release notes.

We provided each participant with:

1) a pre-study questionnaire aimed at gathering informa-
tion about the participants’ background, in particular
about their industrial and programming experience (in
years) and their habits in exploiting release notes when
using a new available system release;

2) the generated release note and the original release note
to be compared by the participants, as described later
in this section;

3) a post-study questionnaire, where we asked partici-

pants to assess the general usefulness of the various
categories of information provided by the ARENA re-
lease notes (e.g., new features, bug fixes, refactored code
components, etc.). For each category, the participants
provided their level of agreement to the claim “The
category should be included in the release note” using a 4-
point Likert scale [31] (strongly agree, weakly agree, weakly
disagree, strongly disagree). We opted for a 4-point Likert
scale since we wanted to avoid “neutral” answers,
thus pushing participants to take a position about the
assessed release notes. Neutral answers are less useful
in assessing our approach and in getting feedback for
its improvement.

Participants were asked to determine and indicate for
each item in the original release note whether: (i) the item
appears in the generated release note with roughly the
same level of detail; (ii) the item appears in the generated
release note but with less details; (iii) the item appears in
the generated release note and it has more details; or (iv)
the item does not appear in the generated release note. In
order to avoid bias in the evaluation, we did not refer to
the release notes as “original” or “generated”. Instead, we
labeled them as “Release note A” and “Release note B”. In
addition, the participants were asked to assess the relevancy
of all the extra items (as a group) in the generated release
note, which were not present in the original one. Ideally,
we should have asked them to assess the content of each
individual item. Assessing these items as a group introduces
a threat to the validity of the results, as individual items
may be rated differently than the group as a whole. We
accept this threat to the validly of the results, as assessing
each item individually would have been too demanding
for the evaluators (in terms of time and effort). For these
reasons, we asked them to provide an overall evaluation of
these items, asking them to indicate—using a 4-point Likert
scale [31] (strongly agree, weakly agree, weakly disagree, strongly
disagree)—whether these items should be part of the release
note. The rationale for choosing a 4-point Likert scale over
a 5-point one is the same as above.

When all the participants completed their evaluation, a
Ph.D. student from the University of Sannio8 analyzed them
to verify and arbiter any conflict in the evaluation of the

8. None of the authors.



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

11

TABLE 5
Evaluation provided by the study participants to the items in the original

release notes.

System Release Absent Less Same More
Details Details Details

Apache Cayenne 3.0.2 15% 5% 0% 80%
Apache Cayenne 3.1B2 16% 0% 0% 84%
Apache Comm. Codec 1.7 13% 5% 5% 77%
Apache Lucene 3.5.0 37% 39% 8% 16%
Jackson-Core 2.1.0 25% 8% 33% 33%
Jackson-Core 2.1.3 0% 0% 50% 50%
Janino 2.5.16 0% 6% 0% 94%
Janino 2.6.0 12% 38% 0% 50%
Average 14% 13% 12% 61%

items present in the original release notes. For example,
if the two evaluators judging the same release note pro-
vided opposite responses for the same item (e.g., the item
is present in the generated release note vs. not present),
then the Ph.D. student solved the conflict by verifying the
presence/absence of the disputed item. Out of 144 evaluated
items, 43 (30%) exhibited some conflict between the two
evaluators. Only five of them (3%) showed strong conflict
between the evaluators, e.g., “the item appears” vs. “the item
is missing”. The other 38 cases had slight deviations in the
evaluation, e.g., “the item appears with roughly the same level of
detail” vs. “the item appears but with less details.”

4.1.2 Participants’ background
Before presenting the results of the first study, we analyze
the background of the evaluators. Six out of ten evaluators
have experience in industry, ranging from one to five years
(median 1.5). They reported four to 20 years (median 5.0) of
programming experience, of which two to seven are in Java
(median 4.5). Also, seven out of the ten evaluators declared
that they routinely check release notes when using a new
available system release, where they look for new features
(6 evaluators), fixed bugs (4), modified code components (2),
and compatibility with previous releases (2).

4.1.3 Analysis of the Results
Table 5 summarizes the answers provided by the evaluators
when asking about the presence of items from the original
release notes in the release notes generated by ARENA. On
average, ARENA correctly captures, at different levels of
detail, 86% of the items from the original release, missing
only 14%. In particular, ARENA provides more details for
61% of the items present in the original release notes, the
same level of details for 12%, and less details for 13% of the
items. The following is an exemplar situation where an item
in the generated release has more details than in the original
release. In the release note of Apache Commons Codec 1.7,
the item “CODEC-157 DigestUtils: Add MD2 APIs” describes
the implementation of new APIs. In the ARENA release
note, the same item is reported as shown in Fig. 3. ARENA
reports the addition of new APIs to the DigestUtils
class and it also explicitly includes: (i) which methods are
part of the new APIs; and (ii) the test methods added in
DigestUtilsTest to test the new APIs.

An outlier case is for Lucene 3.5.0, where ARENA missed
14 (37%) of the items present in the original release note.
Upon closer inspection, we found that eight of the missed
items are bug reports fixed in a previous release, yet (for

TABLE 6
Answers to the claim: The extra information in the generated release

notes should be included.

System Release Strongly Weakly Weakly Strongly
agree agree disagree disagree

Apache Cayenne 3.0.2 1 1
Apache Cayenne 3.1B2 1 1
Apache Commons Codec 1.7 2
Apache Lucene 3.5.0 1 1
Jackson-Core 2.1.0 1 1
Jackson-Core 2.1.3 2
Janino 2.5.16 2
Janino 2.6.0 1 1
Total evaluations 10 4 2 0

an unknown reason) reported in the release note of Lucene
3.5.0 (e.g., issue LUCENE-3390). If we disregard such issues,
the percentage of missed items in this release drops to 20%,
almost in line with the other release notes.

We analyzed the items that ARENA missed in the other
release notes. We found that all the missed items are due
to a slight deviation between the time interval analyzed by
ARENA and the one comprising the changes considered in
the original release note. As explained in Section 3, we make
an assumption about the time period of analysis, going from
the rk−1 release date tk−1 until the rk release date tk. This
problem would not occur in a real usage scenario, where the
developer in charge of creating a release note using ARENA
can simply provide the best time interval to analyze via the
ARENA GUI (see Section 3.5).

In addition, the evaluators were asked to judge whether
the items and details (as a whole) appearing in the ARENA
release notes, but missing in the original ones, should
be included. Their answers are summarized in Table 6.
Remember that each release note was evaluated by two
participants, for a total of 16 evaluations. The majority of
the participants selected strongly agree or weakly agree (i.e.,
14 out of the 16 evaluations). Also, for three release notes
(i.e., Apache Commons Code 1.7, Jackson Core 2.1.3, and
Janino 2.5.16), both evaluators strongly agreed that the extra
information provided by ARENA should be included in the
release notes.

Evaluators provided positive feedback about the rele-
vancy of the additional details present in the ARENA release
notes. A representative one is: “Knowing the changes at fine-
grained level is very useful for a developer that has to work on
the new system release. Also, the information about deprecated
code components is very useful.” Note that in two cases—i.e.,
Apache Lucene 3.5.0 and Janino 2.6.0—one of the evalua-
tors weakly disagreed on the additional details provided by
ARENA. The reason behind the assessment was the same in
both cases: “It is useful to list the changes in the code associated
with bugs, improvements, or any specific purpose. [...] But the
items containing only the [code] changes without any purpose
result confusing. It is hard to say why these changes were made.”
Such items are the result of commits that could not be linked
to any bug fix, improvement, or new feature requests in
the issue tracker system. This highlights the importance of
linking issues to changes. Instead, the other two participants
(positively) evaluating the same release notes pointed out
the usefulness of the extra information and, in particular, of
the details about added components.

Finally, Table 7 summarizes the answers of the eval-



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

12

TABLE 7
Agreement to the claim: the category should be included in the release

note.

Item Strongly Weakly Weakly Strongly
Agree Agree Disagree Disagree

New features 90% 10% 0% 0%
Bug fixes 100% 0% 0% 0%
Improvements 80% 20% 0% 0%
Added code components 50% 50% 0% 0%
Modified code components 70% 30% 0% 0%
Deleted code components 70% 30% 0% 0%
Deprecated code components 80% 20% 0% 0%
Changes to visibility of code components 50% 20% 20% 10%
Refactored code components 10% 60% 30% 0%
Changes to used libraries 70% 30% 0% 0%
Changes to licenses 70% 20% 0% 10%

uators to our post-questionnaire, where we asked them
about their perception of the overall usefulness of various
categories of information provided by the ARENA release
notes. In general, the information considered by ARENA is
considered important by participants, with one exception
represented by the refactored code components, for which
only 10% of participants strongly agree about the need for
including them in the release notes. As mentioned, we in-
cluded this kind of information in the release notes based on
our initial survey of existing release notes. These questions
are not meant to provide definite validation of our choices,
but rather a “sanity check”.

Summary of Study I (RQ1)—Completeness. The
ARENA release notes capture most of the items from the
original release notes (86% on average) and most of the
missing items can be included by adjusting the considered
time interval. Furthermore, 88% of the evaluators agree
(strongly or weakly) that the additional information ex-
tracted by ARENA should be included in the release notes.
Finally, all categories of information included by ARENA
in the release notes are considered important by most eval-
uators, except for refactoring operations, which have less
support.

4.2 Study II—Importance
The goal of Study II is to evaluate the perceived importance
of the captured and missed items in the ARENA release
notes from the perspective of external users/integrators, as
well as from the perspective of internal developers. In other
words, the study aims at determining whether ARENA
is missing particularly important information that original
release notes contain, or whether it provides unimportant
details to developers, resulting in long and tedious to
browse/read release notes. The context of this study consists
of: objects, i.e., automatically generated and original release
notes from one release of two open-source projects (see
Table 3); and participants evaluating the release notes, i.e.,
38 professional and open-source developers, including three
developers of each object project. One release of Apache
Lucene and one release of Apache Commons Collections
were selected for the study. The conditions to select the
release notes were the same as in Study I.

4.2.1 Design and Planning
We performed Study II by using an online survey. We
emailed the survey to several open-source developers reg-
istered in the Apache repositories and professional devel-
opers from around the world. The questionnaire consisted

of two parts on: (i) the participants’ background and their
experience in using and creating release notes; and (ii) the
evaluation of the ARENA release notes and the original
release notes for Apache Lucene 4.0.0 and for Apache Com-
mons Collections 4.4.0ALPHA1. Note that we decided to
use different systems from the ones used in Study I in order
to increase the number of systems in the ARENA evaluation
and to ensure better external validity. We targeted major
releases of medium sized systems (100<KLOC<200).

The evaluation of each release note was divided in two
stages. In the first stage, participants were asked to indicate
for the types of items (e.g., Major Changes) of the original re-
lease note, which were missing in the release note generated
by ARENA whether each one was: (i) not at all important;
(ii) unimportant; (iii) important; or (iv) very important. A
similar process was followed in the second stage, but this
time for assessing the importance of types of items of the
ARENA release note that were missing in the original one.
In both stages, we pointed out that some items present in
a release note and (apparently) missing in the other one
might simply be represented in different ways. In the case of
Lucene 4.0.0, for example, the items under the Improvements
category in the ARENA release note are listed under the
Optimizations category in the original release note.

4.2.2 Participants’ background
Similar to Study I, in this study we profiled the participants
by collecting information on their experience in software
development and their experience in using and creating
release notes, and, if they had created such documents,
what kind of content do they include in them. Among
the 38 evaluators, 31 are professional developers who re-
ported experience in software development ranging from
two to 30 years (median 8). The other seven participants
are open-source developers, ranging from seven to 25 years
of experience in software development (median 13). Three
of the participants are developers of Apache Commons
Collections, while other three are developers of Apache
Lucene. Also, 26 out of the 38 evaluators declared that they
use release notes frequently (i.e., more than once a month)
or occasionally (i.e., once a month), mainly to check for bug
fixes and new features in a software system. In addition,
16 developers declared that they check in the release notes
of their project’s dependencies for compatibility issues and
changes that might arise from the new releases.

Only six evaluators (16%) reported that they have never
created release notes. Among the other 32 participants, 22
(58%) reported having created release notes many times (i.e.,
more than eight times), eight (21%) reported having done it
a few times (i.e., three to eight times), and two (5%) declared
having created a release note once or twice. Our survey
was designed to ask only highly experienced developers in
creating release notes (i.e., the 22 cited above) details about
this task. Fig. 4 presents the participants’ answers on the
time and difficulty of creating release notes. Specifically, 64%
of the evaluators (i.e., 14 of them) considered this task as
difficult or very difficult, while 36% rated it as easy or very
easy (median=difficult). The participants also reported a
median of between four and eight hours to create release notes.
One of the participants explained that the time needed to
create a release note depends on the release, claiming that



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

13

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

H
ow

 m
uc

h 
tim

e 
do

es
 it

 ta
ke

 to
 c

re
at

e 
a 

re
le

as
e 

no
te

?

Less than
one hour

Between one
and four hours

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

H
ow

 d
iff

ic
ul

t i
s 

it 
to

 c
re

at
e 

a 
re

le
as

e 
no

te
?

How much time does
it take to create a release note?

How difficult is it to create 
a release note?

Between four
and eight hours

More than
eight hours

Very 
easy

Easy

Difficult

Very
difficult

Do you use any supporting tool when creating release notes?

YES 6/22 (27%)
4: Git log -- 2: Issue Tracker NO 16/22 (73%)

Fig. 4. Difficulty in creating release notes.

he worked in the past on “a major release of a software company
product for which the creation of the release note took three days
of work.” Finally, only seven evaluators (31%) declared using
a supporting tool, such as, issue trackers or version control
systems, when creating release notes. Note that ARENA is
the only existing automated tool specially designed to sup-
port the generation of release notes. Furthermore, ARENA is
able to shorten the time devoted to this task, as less than ten
minutes are needed to generate a release note for a release
ri of a medium-sized system (∼50 KLOC) subject to few
hundreds of changes (∼500) in the time period between ri−1

and ri.
We also asked the 22 participants with high experience

in creating release notes about the kind of content that they
usually include in these documents (see Fig. 5). New Features
and Bug Fixes are, by far, the most common items in the re-
lease notes: most of the participants reported including them
often (21 and 20 evaluators, respectively). Enhanced Features
are also frequently included in the release notes (often by
11 participants and sometimes by ten). Both results confirm
the findings of our survey on 990 existing release notes
presented in Section 2. Other frequently included items are
Deleted and Deprecated Code Components, Changes to Licenses,
Library Upgrades, and Known Issues (median=often), while
items related to Refactoring Operations and Added, Replaced or
Modified Code Components are sometimes included. Instead,
evaluators rarely include changes to Configuration Files, Doc-
umentation, Architecture, and Test Suites in the release notes.

4.2.3 Analysis of the Results
The answers provided by the 38 participants on the impor-
tance of different kinds of content from the original and
the generated release notes are summarized in Fig. 6 and
Fig. 7 for Commons Collections and Lucene, respectively.
Note that the boxplots depicted for the two systems refer to
different sets of information. This is because the two release
notes, i.e., the one for Commons Collections (Fig. 6) and the
one for Lucene (Fig. 7), included different categories of items
in the original release note as well as in the one generated
by ARENA. For example, information about the “#Items in
each category” (provided in all release notes generated by

ARENA) was not provided in the original release note of
Commons Collections (Fig. 6) but it was provided in the
original release note of Lucene (Fig. 7). Thus, the boxplot
for such a category is present in Fig. 6 but not in Fig. 7.
Among the items present in the original release notes and
missed by ARENA, the ones considered important/very
important by developers are: Major Changes from Commons
Collections, summarizing the most important changes in the
new release; and API Changes, Backward Compatibility, and
Optimizations from Lucene.

On the one hand, the Major Changes section is not
present in the ARENA release notes, but future efforts
will be oriented to implement an automatic prioritization
of changes in the new release, which will allow ARENA
to select the most important ones to define such a cate-
gory. On the other hand, the information present in API
Changes, Backward Compatibility, and Optimizations in the
original release notes is present in the ARENA release notes,
but organized differently. For example, the removal of the
SortedVIntList class is reported in the original release
notes in the Backward Compatibility category, while ARENA
puts it under Deleted Code Components. Thus, ARENA is not
missing any important information here. As for the other
items present in the original release notes and not in the
ones generated by ARENA, they are generally classified as
unimportant/not important (see Fig. 6 and Fig. 7).

Regarding the contents included in the ARENA release
notes and missing or grouped differently in the original
release notes, most of them (nine out of 11 different kinds of
content) were predominantly assessed as important or very
important (by 28 developers, in average). The Improvements
category is considered important/very important by 34
developers for Commons Collections and 33 for Lucene,
respectively. While the items contained in this category are
present in the Optimizations section of the Lucene release
note, they are absent in the Commons Collections one.
Participants also considered as important or very important
the categories covering Known Issues (by 32 developers) and
Deletion (29), Addition (28), Deprecation (29), and Visibility
Changes (26) of Code Components. The evaluators (24 for
Commons Collections and 19 for Lucene) also considered
important the fine-grained changes (i.e., changes at code level)
provided by ARENA when describing new features, bug
fixes and improvements, and the links to the change requests
(30) listed under such categories. Note that most of the
above categories are absent in the original release notes.
For instance, while in the original release note of Lucene
one deleted class was listed under the Backward Compatibility
section, ARENA highlights 76 classes that were deleted in
the new release. Surprisingly, Refactoring Operations were
considered as unimportant in both release notes (by 24
developers for Commons Collections and 25 for Lucene).
This might be due to the level of detail that ARENA is
currently able to provide in this matter (i.e., the refactored
source code files, without explaining what exactly was done
to them).

Evaluation made by the original developers. The results
presented above are obtained considering the responses of
all the 38 surveyed participants. However, among them
there are six of the original Lucene and Commons Collec-
tions developers (three of each project). Thus, it is worth-



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

14

●●● ●●

●

●● ●

Fixed
bugs

New
features

Enhanced
features

New code
comp.

Modified
code comp.

Deprecated
code comp.

Deleted
code comp.

Replaced
code comp.

Changes vis.
 code comp.

Changes to
conf. files

Changes to
test suites

Refactoring
operations

Architectural
changes

Changes to
docum.

Changes to
licenses

Libraries
Upgrades

Known
Issues

1.
0

2.
0

3.
0

4.
0

What kind of content do you include in release notes?

Often

Sometimes

Rarely

Never

Fig. 5. What kind of content do you include in release notes? (22 developers)

Important

Unimportant

Not at all
important

Very
Important

Major changes
since 3.2.1

Separated new
classes and new meth.

New meth.
in Utils

Author of
the change

Improvements Deleted
code comp.

Deprecated
code comp.

Fine grained
changes

Refactoring
operations

Issue tracker
links

#Items in
each category

Fig. 6. Importance reported by the evaluators for the content of Commons Collections release notes.

Important

Unimportant
Not at all

important

Very
Important

Optimizations Build Added
code comp.

Author of
the change

Improvements Deleted
code comp.

Deprecated
code comp.

Fine grained
changes

Refactoring
operations

Changes vis.
code comp.

Modified
code comp.

Backward
compatibility

API
changes

Changes to
docum.

Known
issues

Fig. 7. Importance reported by the evaluators for the content of Lucene release notes.

while to independently analyze the original developers’
responses (i.e., of those developers with more knowledge
of the object systems) to gain a different perspective on the
release notes generated by ARENA.

In the case of the contents explicitly provided by the
original release note of Commons Collections, its three
developers strongly agreed on the importance of the Major
Changes category and weakly agreed on the importance
of showing the author of the change (marked as important
by two developers and unimportant by the other one). In
contrast, having separate categories describing new classes
and new methods (as opposed to ARENA’s single New Code
Components category) was ranked from very unimportant
to very important, showing a strong disagreement among
participants. The three developers strongly agreed on the
importance of all the attributes offered by the ARENA
release notes, except for the number of items in each category
(e.g., indicating the number of added code components near
the New Code Components category), which was considered
unimportant by two developers and very important by the
other one.

Turning to the original release note of Lucene, its three
developers strongly agreed on the importance of the API
Changes and Backward Compatibility categories, and on the
unimportance of the authors of the changes. There was little

agreement on the importance of the other content of this
release note. However, once again, the three developers
strongly agreed on the importance of all the content in-
cluded in the ARENA release note, except for the Refactoring
Operations category, which was marked as important by
two of the developers and unimportant by the other one.
Most of the developers’ responses are in line with the
responses of all the other evaluators, presented above. This
indicates that, at least in the case of Commons Collections
and Lucene, developers and integrators are interested in the
same content within the release notes.

Qualitative feedback. We also allowed participants to
comment on the ARENA release notes in a free text box
at the end of the survey. The evaluators provided positive
feedback about the release notes generated by ARENA. In
total, we collected eight positive comments related to the
content, potential usefulness and readability of the release
notes generated by ARENA, and two negative comments
on their presentation and low-level detail of information.
Three of the evaluators commented on desired features in
the generated release notes, e.g., links to changes in the ver-
sioning systems, more details and explanations of particular
changes, and browsing options. Representative examples
include: “In general, they are very readable. I think they are
aimed at engineers more than at non-engineers. [...] for something



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

15

that is consumed as an API, such as an open-source library
or framework, I think these kind of notes are ideal.” Another
developer commented “If it’s fully automated (I’m not sure)
ARENA is a great tool.” Some of the contents provided by
the generated release notes were considered unimportant in
some cases. One of the reasons behind such assessments
was that “Every item needs a description to be useful. For
example, the Added Components section needs a description of
each component, and the Modified Components section needs a
description of what is the meaning of the modification.” This
comment refers to items in the generated release notes that
do not have a textual description motivating the change; this
happens for commits that cannot be linked to any bug fix,
improvement, or new feature request in the issue tracker
system. Since ARENA is meant to support the creation of
release notes, they can be augmented by the users with
additional information, according to their needs.

Summary of Study II (RQ2)—Importance. Most infor-
mation included in the ARENA release notes is considered
important or very important by developers. Also, most
information considered as important in the original release
notes is captured by ARENA (although sometimes in a
different fashion), with the exception of the Major changes
category that we plan to include by prioritizing changes.

4.3 Study III—Study with Industrial Developers

The goal of Study III is to allow project experts: (i) to evaluate
the generated release note on its own, including their per-
ceived usefulness; and (ii) to compare the generated release
note with one manually produced by their team leader. The
context of this study consists of objects and participants. As
objects we use one release of the SMOS system, a software
developed to support the communications between schools
and the students’ parents. Its first release (i.e., SMOS 1.0) was
developed in 2009 by M.Sc. students. Its code, composed
by almost 23 KLOC, is hosted in a git repository and has
been subject to several changes over time. This led to the
second release (i.e., SMOS 2.0) nearly two years later. The
participants of this study are five (out of seven) members
of the original development team of this system, all being
nowadays industrial developers.

4.3.1 Design and Planning
To have a baseline for comparison, we asked the leader of
the original development team to generate a release note
of SMOS 2.0. We considered him to be the best qualified
person to create a complete and accurate release note for
SMOS. During the creation of the release note, the leader
had access to: (i) the source code of the two releases; (ii) the
list of changes (as extracted from the versioning system)
performed between the two releases; and (iii) informa-
tion from the issue tracker containing the change requests
implemented in the time period between SMOS 1.0 and
2.0. Finally, we asked him to report the time he spent
on producing the release note. This information, however,
is only indicative and cannot be really representative of
other projects (different development teams could rely on
different tools).

We conducted this study in two stages. In the first stage,
the developers (excluding the project leader) evaluated the

release note generated by ARENA based only on their
knowledge of the system. As in Study I, we did not refer
to this one as an automatically generated release note (but
as Release note A). We asked the developers to judge the
next four statements with the possible answers on a 4-point
Likert9 scale [31] (strongly agree, weakly agree, weakly disagree,
strongly disagree):

1) The release note contains all the information needed to
understand what changed between the old and the new
release;

2) All the information reported in the release note is
correct;

3) There is redundancy in the information reported in the
release note;

4) The release note is useful to a developer in charge of
evolving the software system.

In addition, we asked them to provide a free-text argu-
ment for each question. We also asked them what kind of
additional information should be included in the release
note. In the second stage, we asked the SMOS developers
to evaluate—using the same questionnaire—the release note
manually produced by the team leader, calling it Release note
B.

After they completed the questionnaire, we asked the
developers to re-evaluate the release note generated by
ARENA. To this end, we provided them with their com-
pleted questionnaires and asked if they would change any
answer and how, in light of the analysis of the second
release note. We allowed participants to revise their original
evaluation because during the analysis of the first release
note they did not have any baseline for comparison. The
second release note offered participants this baseline, which,
as a result, could (positively or negatively) change the
evaluation of the first release note.

The main difference between Study III and Study II is that
in Study III developers evaluated the ARENA-generated
release note and the release note produced by an original
developer as a whole, without focusing on missing informa-
tion nor without performing a comparison of single items
contained in both release notes. It is noteworthy that the
evaluation in Study III was performed without knowing
whether a release note was automatically or manually gen-
erated.

4.3.2 Analysis of the Results
As explained before, in the first stage of our evaluation with
SMOS developers, we asked the team leader to manually
generate the release note for SMOS 2.0. The team leader
took 82 minutes to manually summarize the 109 changes
that occurred between releases 1.0 and 2.0. This resulted in
a release note with 11 items, each one grouping a subset of
related changes. For example, one of the items in this release
note was:

Several changes have been applied in the system to
implement the Singleton design pattern in the classes
accessing the SMOS database. Among the most impor-
tant changes, all constructors of classes in the storage
package should now not be used in favor of the new

9. As already discussed for Study I, we opted for a 4-point Likert scale
to avoid “neutral” answers.



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

16

TABLE 8
Evaluation provided by four original developers to the release note generated by ARENA for SMOS. In parenthesis, the evaluation provided to the

manually-generated release note.

Claim Subject ID
1 2 3 4

The release note contains all the information needed to understand what changed between the old and the new release 3 (2) 4 (3) 4 (3) 4 (3)
All the information reported in the release note is correct 4 (3) 4 (4) 4 (4) 4 (4)
There is redundancy in the information reported in the release note 1 (1) 1 (1) 1 (1) 1 (1)
The release note is useful to a developer in charge of evolving the software system 3 (3) 4 (3) 4 (3) 4 (3)

1=strongly disagree, 2=weakly disagree, 3=weakly agree, 4=strongly agree

methods getInstance(), returning the single exist-
ing instance of the class. This resulted in several changes
to all methods in the system using classes in storage.

In the meantime, the remaining four developers evaluated
the release note generated by ARENA. The results are
reported in Table 8 (see the numbers not in parenthesis).

Developers strongly agreed or weakly agreed on the fact
that the ARENA release note contains all the information
needed to understand the changes performed between the
two SMOS releases. In particular, the only developer an-
swering weakly agree (ID 1 in Table 8) explained that “the
release note contains all what is needed. However, it would be
great to have a further level of granularity showing exactly
what changed inside methods.” In other words, this developer
would like to see, on demand, the source code lines modi-
fied in each changed code entity. While this information is
not present in the ARENA release note, it would be rather
easy to implement. All other developers answered with a
strongly agree and one of them explained her score with the
following motivation: “I got a clear idea of what changed in
SMOS 2.0. Also, I noticed as I was not aware about some of the
reported changes.” Two of the other developers, answering
with strongly agree, indicated additional information that
could further improve the completeness of the release note:
“information about who performed each change would be great to
contact her/him for clarification.” Note that this information is
quite easy to include in ARENA.

All developers strongly agreed on the correctness of the in-
formation reported in the release note generated by ARENA
(see Table 8). Also, they strongly disagreed on the presence of
redundancy in the information reported in the release note.
In particular, one of them explained that “[the] information is
well organized and the hierarchical view allows visualizing exactly
what you want, with no redundancy.”

Finally, all developers weakly agreed or strongly agreed on
the usefulness of the ARENA release note for a developer
in charge of evolving the software system, for example, “the
release note is very useful to get a quick idea of what changed in
the system and why.” The only developer answering weakly
agree commented: “developers are certainly able to get a clear
idea about what changed in the system, but they may still need to
look in source code for details.” Note that this developer was
the one asking for granularity at the line level.

In the second part of this study, we asked the same four
developers to evaluate (by using the same questionnaire)
the release note manually generated by their team leader.
Table 8 reports these results in parenthesis. In this case,
three developers weakly agreed on the completeness of the
release note, while one weakly disagreed. As comparison, on
the completeness of the release note generated by ARENA

Fig. 8. An excerpt of ARENA release notes for SMOS.

three developers strongly agreed and one weakly agreed.
The developer answering weakly disagree motivated her

choice explaining that “the level of granularity in this release
note is much higher as compared to the previous one. Thus, it is
difficult to get a clear idea of what changed in the system. Also, in-
formation about the updated libraries is missing.” When talking
about “the granularity” of the release note, the developer
refers to the fact that changes are not always reported at
method level as it was in the ARENA release note. This is
likely due to the fact that changes in the versioning system
are stored at file level granularity and, thus, it was simpler
for the developer manually writing the release note to list
the files changed to implement a new feature, a bug fix,
etc., without going at method-level granularity. Also, one of
the developers that weakly agreed on the completeness of the
manually-generated release note referred to the previously
evaluated one (i.e., the one generated by ARENA), claiming
that: “it is almost complete, but the previous one was more
precise.”

Three developers strongly agreed on the correctness of
the information reported in the manually-generated re-
lease note, while one of them answered weakly agree, re-
porting an error present in the release note: “the method
daysBetweenDates has been deprecated, not deleted.” In
particular, the manually-generated release note contained
the item:

The method daysBetweenDates has been deleted.
while the release note generated by ARENA reported the
information shown in Fig. 8. This highlights that, even when
preparing a release note for a moderately small software
system like SMOS, developers can include errors, which
are avoidable by using a fully automated approach like
ARENA.

Finally, all developers strongly disagreed on the presence
of redundant information in the manually-generated release
note, and weakly agreed on its usefulness. For the ARENA
release note, instead, three of developers strongly agreed
on its usefulness. In this regard, some of the explanations
provided by developers highlighted the usefulness of the
details provided by ARENA: “this release note is less detailed
than the previous one, but it is still useful,” and “also in this
case a developer needs to look into the source code to get a clear
idea of what changed, but she has to spend more time to find the
modified pieces of code, since several changes are just reported at



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

17

file level.” At last, nobody decided to change the scores given
to the ARENA release note after having seen the manually-
generated one.

Summary of Study III. The SMOS developers judged the
ARENA release note as more complete and precise than the
one created by the team leader (RQ1). Moreover, the extra
information included in the generated release note makes it
to be considered more useful than the manual one (RQ2).

4.4 Study IV—Six-month In-field Study

Study IV is an in-field study conducted over six months with
the goal of assessing the quality and usefulness of the release
notes generated by ARENA in a real, everyday working
environment. The context of this study consists of objects,
i.e., four different releases of OM10 (see Table 3), a medical
software system that automates blood analyses by guiding
a robot in performing tasks that are typically performed
by human operators (e.g., mixing reagents to human blood
in order to perform HIV test). OM is developed by an
Italian company (from now on simply referred as software
company) that started its implementation in September 2014.
The participants of the study are members of the initial OM
development team, which consisted of three developers,
including two senior developers with over ten years of
experience each and the team leader with more than 15
years of experience in software development. All of them
had past experience in writing of release notes, with the
team leader highlighting this activity as one of his main
duties when coordinating a team.

OM has been commissioned by an analysis laboratory
and, as established in the contract between the software
company and the laboratory: (i) it has been incrementally
released over the past six months (i.e., from September 2014
to March 2015) in four different releases (i.e., on average, a
release each 45 days), and (ii) each of the issued releases has
been accompanied by detailed documentation, including a
release note. The software company agreed to use ARENA
for generating the release notes of OM over this six-month
implementation activity and to provide us with feedback on
the strengths and weaknesses of our tool. OM is hosted in a
git repository and uses Mantis11 as issue tracker.

4.4.1 Design and Planning
In September 2014, when the OM development started, one
of the authors instructed the team on how to use ARENA
in order to generate release notes. Then, the following
procedure was adopted each time a new OM release was
issued:

1) ARENA was used by the team to automatically gener-
ate the release note. An adapted version of the ARENA
tool supporting the extraction of issues from Mantis
was used in this case.

2) The team answered a questionnaire asking their level
of agreement to the same four claims from the ques-
tionnaire used in Study III (see Table 9). The answers
were given using the same 4-points Likert scale [31].

10. OM is a pseudonym of the software system object of our study.
The company requested to anonymize the software system in the study.

11. https://www.mantisbt.org

Also in this case, we asked the team to provide a free-
text argument for each question. Additionally, since the
release note was one of the official documents to issue
as part of the OM contract, we asked the participants to
list the information that they added/deleted/modified
in the release note generated by ARENA, before includ-
ing it as part of the official release documentation. Note
that, given the small size of the team (i.e., three devel-
opers), we only asked for one filled-in questionnaire as
representative for the entire team’s perception of the
ARENA’s release notes.

3) Finally, the team sent to the author: (i) the release note
that they generated with ARENA, and (ii) the answers
to the questionnaire.

As previously said, four OM releases (from 0.1 to 0.4)
were issued in the six months of our study, leading to four
generated release notes and corresponding answered ques-
tionnaires. In April 2015, at the end of our study, one of the
authors conducted a two-hours, semi-structured interview
with the OM team, in order to gather further qualitative
feedback about ARENA and its release notes. The interview
included (but was not limited to) the following questions:
Q1 Would you like to adopt ARENA in the company where you

work?
Q2 What are the three major strengths and weaknesses of

ARENA?
Also, the interviewer asked the team members to com-

ment about and/or clarify some of the answers provided in
the questionnaires they filled in the previous six months.

4.4.2 Analysis of the Results
Table 9 reports the results of the evaluation provided by the
development team to the four OM release notes generated
by ARENA. Notice that for the first OM release (i.e., OM
0.1) there is no previously existing release and, indeed, most
of its information refers to new features implemented from
scratch. The team always strongly or weakly agreed on the fact
that the ARENA release notes contain all the information
needed to describe the changes performed between the old
and the new release. A reason behind the “weakly agreed”
assigned to the release notes of OM 0.2 and 0.4 is reflected
by the comment left in the free-text form questionnaire of
OM 0.4:

“Overall the release note looks very good. However,
while for most of the changes the title of the issue is
enough to document the rationale behind the performed
changes, there are specific changes that would benefit
from the inclusion of additional information to docu-
ment in the release note the reasons behind changes
performed in the system. An example in this release is
the issue OM-45.”

During the unstructured interview we asked the team
members additional insights about this answer. As ex-
plained in Section 3.4, ARENA organizes the changes in
the release note based on the category to which they be-
long (e.g., Improvements, etc.). These categories can then be
expanded to list the set of items (i.e., issues) belonging to
each of them (e.g., the list of improvements implemented in
the new release). When structural changes detected in the
source code are linked to an issue, its title is presented as a



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

18

TABLE 9
Evaluation provided by the involved team the release notes generated by ARENA for the four OM releases.

Claim OM Release
0.1 0.2 0.3 0.4

The release note contains all the information needed to understand what changed between the old and the new release 4 3 4 3
All the information reported in the release note is correct 4 4 4 4
There is redundancy in the information reported in the release note 2 2 2 2
The release note is useful to a developer in charge of evolving the software system 4 4 4 3

1=strongly disagree, 2=weakly disagree, 3=weakly agree, 4=strongly agree

description of the change (see for instance Fig. 8 from Study
III). The team pointed out that, although in general this
is enough to explain why certain structural changes were
performed, there are a few cases where additional details
on the rationale of the changes are needed. In particular,
the team refers to the issue OM-45, which represents an
improvement implemented in OM 0.4 and is shown in
Fig. 9, as reported by the ARENA release note. The team
found important to document in the release note why the
randomly generated captcha image used to discriminate
between humans and bots during a “new user registration”
is deleted right after the user registration is completed.
They suggested to integrate into ARENA a mechanism to
automatically generate a summary of the issue description
and its discussion (i.e., the comments left by the developers).
This is part of our future work on ARENA, in which we can
make use of approaches that automatically summarize issue
reports [23], [24], [35].

Fig. 9. An excerpt of the ARENA release note for OM 0.4.

The participants strongly agreed on the correctness of the
information reported in all four ARENA release notes. In
other words, they did not find code changes assigned to
the wrong release. Note that in this study the developers
manually provided the time interval for each release. Thus,
such result is an important confirmation that, when the time
interval to analyze is correctly provided, the information
extracted by ARENA is correct.

Consistently across the four releases, participants weakly
disagreed on the presence of redundancy in the ARENA
release notes (see Table 9). The justification for this question
was also consistent across the four release notes:

“The possibility to expand and retract the details about
any of the different items allows the reader of the release
note to control in some way the level of redundancy
she wants. The only point of redundancy we see is in
the description of classes, especially in terms of Java
Servlets.”

When asking further insights about this comment the team
explained that, especially in the New Feature category, the
class descriptions provided by ARENA are quite similar.
The cause of such a situation is that several of the new
classes implemented in the OM releases are Java Servlets,
all summarized by ARENA with a common pattern, i.e.,
New class ClassName extending HttpServlet. This bound-
ary class communicates mainly with HttpServletRequest,

TABLE 10
Information added/deleted/modified before issuing the OM release note

as official documentation.

Change Type OM Release
0.1 0.2 0.3 0.4

Information Added No No No Yes
Information Deleted No No No No
Information Modified Yes Yes Yes Yes

HttpServletResponse, and HttpSession. Since OM
has been built from scratch during the six months of our
study, each one of its releases contained several new classes
(including Servlets), leading to this redundancy observed
by the developers. Note that these descriptions are inde-
pendently generated for every class based on their particu-
lar implementation, which suggests a common design and
structure in this case. Future work on ARENA will focus
on grouping structurally similar classes to provide a unique
summary for them.

Finally, the developers strongly agreed (releases 0.1, 0.2,
and 0.3) and weakly agreed (0.4) on the usefulness of the
ARENA release note to a developer in charge of evolving
the software system. As explained by the team in the un-
structured interview, the latter evaluation (i.e., the weakly
agreed to the usefulness of the ARENA’s release note for OM
0.4) was due to the missing rationale for the change related
to the OM-45 issue, previously described (and reported in
Fig. 9).

Table 10 reports on the ARENA’s release notes in which
the developers added, deleted, and modified information
before issuing them as part of the official documentation of
the OM project. In the release 0.4, the team documented the
rationale behind the changes implemented for the OM-45
issue, thus adding new information to the ARENA release
note. As previously said, the documentation of the rationale
behind the applied changes is something we plan to explore
in the future. In the other three release notes, no information
was added.

No information generated by ARENA was deleted from
any of the release notes. This confirms the results achieved
in Study II providing further empirical evidence on the
correctness and importance of the items reported in the
release notes generated by ARENA. In all four release
notes developers merged together the description of all the
servlets that were added to implement a specific feature, as
a single point in the release note. For example, a description
like:

• OM-31: Implement the kit management subsystem
– New class ServletEditKitsAP extending
HttpServlet. This boundary class commu-
nicates mainly with HttpServletRequest,



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

19

HttpServletResponse, and HttpSession.
– New class ServletShowKitsAP extending
HttpServlet. This boundary class commu-
nicates mainly with HttpServletRequest,
HttpServletResponse, and HttpSession.

was converted into:
• OM-31: Implement the kit management subsystem

– New classes ServletEditKitsAP,
ServletShowKitsAP, both extending
HttpServlet. These boundary classes com-
municate mainly with HttpServletRequest,
HttpServletResponse, and HttpSession.

The goal of this modification was to reduce the level of
redundancy in the official release notes. We are working on
a similar mechanism that allows ARENA to group classes
having a similar description.

Finally, during the final semi-structured interview, all
three developers expressed their support to systematically
adopting ARENA in their company. In the team leader’s
own words:

“ARENA helps to save time, especially when you need
to create release notes and you cannot really allocate too
much time on such a task. While some improvements are
still needed, this version of ARENA is already enough
to automate most of the work needed in the creation of a
release note.”

When asked about the three major strengths and weak-
nesses of ARENA, the three developers agreed on indicating
the completeness of the captured information, full automation,
and high level of detail in the changes’ description as the three
main strengths of the ARENA tool. On the other hand,
they indicated as major weaknesses: the missing rationale
behind some changes, the limitations of the code summarization
technique (i.e., the ones leading to the presence of some
level of redundancy in the ARENA release notes), and the
impossibility to personalize the ARENA release notes (e.g., by
choosing which information to include before running the
release notes generation). These three aspects will guide our
work on the next release of ARENA.

Summary of Study IV. The OM developers support
the adoption of ARENA in their company, indicating the
usefulness of our tool. They added very little information to
the generated release notes (only in one note)–(RQ3)– and
did not delete any information (RQ2). The OM developers
found the release note generated by ARENA to be complete
and precise (RQ1), with the few exceptions described above.
Finally, they suggested improvements in ARENA, devoted
to unify description of (changes to) similar classes, and to
incorporate in the release note a summary of developers’
discussion on changes (RQ3).

4.5 Summary of the Evaluations
The main findings of the four empirical studies can be
summarized as follows:

• Study I—Completeness. The ARENA release notes
capture most of the items from the original release
notes (86% on average). Furthermore, 88% of the evalu-
ators agree that the additional information extracted by
ARENA should be included in the release notes.

• Study II—Importance. Most information (82%) in-
cluded in the ARENA release notes and missing in

the original release notes is considered important or
very important by developers. Also, the information
considered as important in the original release notes is
captured by ARENA, with the only exception of Major
changes category, which we plan to include in the future
by prioritizing changes.

• Study III—Study with Industrial Developers. Devel-
opers judged the ARENA release note as more com-
plete, useful, and precise than the one manually created
by the team leader.

• Study IV—Six-month In-field Study. The developers
support the adoption of ARENA in their company,
indicating the usefulness of our tool. They found the
release notes generated by ARENA mostly complete
and precise.

5 THREATS TO VALIDITY

This section describes the threats to validity of the over-
all ARENA evaluation, highlighting threats that arose in
specific studies and the extent to which such threats were
mitigated in subsequent studies.

Threats to construct validity concern the relationship be-
tween theory and observation. In this work such threats
mainly concern how the generated release notes were evalu-
ated. For Study I and Study II, we tried to limit the subjective-
ness in the answers by asking respondents to compare the
contents of a generated release note with that of the actual
one. In Study I we assigned each release note to two inde-
pendent evaluators. For Study III and Study IV, although our
main aim was to collect qualitative insights, we still tried
to collect objective information by (i) involving multiple
evaluators, and (ii) using an appropriate questionnaire with
answers in a Likert scale, complemented with additional
comments.

Threats to internal validity concern factors that could have
influenced our results. In Study I and Study III we tried to
limit the evaluators’ bias by not telling them upfront which
were the original and automatically generated release notes.
Instead, this was not done in Study II, which purposely
aimed at determining the possible gaps or redundant infor-
mation in ARENA release notes with respect to the original
one. Another possible threat is that the participants in Study
I and Study II have a different level of knowledge of the
object projects. We must note that some of the respondents
in Study II were developers of the object projects, that their
answers were in line with the answers of the other partici-
pants, and that we also reported a detailed, separate analysis
limited to these participants. None of the participants in
Study I were developers/contributors of the object projects.
In Study III we asked developers to perform the comparative
evaluation only after having provided a first assessment of
the automatically generated release note. This allowed us to
gain both an absolute and a relative assessment.

Threats to external validity concern the generalizability
of our findings. In terms of evaluators, the paper reports
results concerning the evaluation of release notes from the
perspective of potential end-users/integrators (Study I and
Study II) and of developers/maintainers (Study II, Study
III, and Study IV). In terms of objects, across all studies,
release notes from 15 different releases of eight different



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

20

projects were generated and evaluated. Such objects com-
prised open-source libraries (i.e., the Apache projects for
the first two studies), a management system (SMOS) and a
proprietary embedded system (OM). In terms of participants,
the study involved informed outsiders (Study I), developers
not involved in the projects for which they evaluated release
notes (part of of Study II participants), as well as original
developers of open-source and proprietary projects (some of
the Study II participants, as well as all Study III and Study IV
participants). Having said that, we recognize the usefulness
of a further evaluation of ARENA on other projects and
within different kinds of organizations. Also for this aim we
have made ARENA available.

6 RELATED WORK

Little research has been done on release notes or their
automatic generation. Recently, Abebe et al. [1] conducted
a study on the content of 85 release notes from 15 soft-
ware systems. In this study, title, system overview, resource
requirements, installation, addressed issues (i.e., new features,
bug fixes, and improvements), and caveats were identified as
information types contained in release notes. An additional
study on eight of the initial release notes revealed that
different factors related to an issue, such as, its type, number
of comments, description size, days to be addressed, number of
modified files, and reporter’s experience, potentially influencing
the likelihood of an issue to be appear in a release note.
Considering these factors, Abebe et al. proposed four pre-
dictors based on machine learning models to automatically
identify issues to be listed in release notes, and found
random forest being the one achieving the best perfor-
mance. Differently from Abebe et al.’s work, our exploratory
study covers 990 release notes from 55 software systems
and analyzes types of information at a finer granularity
level, which (in one way or another) overlap with the kind
of information studied by Abebe et al. (e.g., the migration
instructions from our study could be regarded as Abebe et
al.’s installation-related information). Moreover, ARENA is not
limited to list issues extracted from the issue tracker, but
also links them to summarized structural changes extracted
from the versioning system. This not only includes the use
of source code summarization but, as detailed in Section 3,
specific approaches to summarize various kinds of changes,
e.g., to documentation, licenses, or libraries. Finally, it is
worth noticing that ARENA and the work by Abebe et al.
[1] are rather complementary than competing techniques.
The goal of our tool is to extract as much information
as possible concerning the issued release and organize it
in order to limit redundancy and information overload.
This is implemented via the expand/collapse mechanism,
showing information at different granularity level. None of
the information extracted from the issue tracker is excluded
from the release note, since we tried to increase as much as
possible the completeness of the ARENA release notes. The
results of the reported evaluations show the appreciation
of such a feature by developers. The work by Abebe et al.
[1] tries instead to discriminate between issues to show/not
show in the release note on the basis of specific characteris-
tics (e.g., type, number of comments, description size, etc.).
Such a technique, properly extended to work not only with

information from the issue tracker but with all categories of
changes captured by ARENA, could be integrated in future
releases of our tool as an option to highlight the major
changes of a system in the release note.

Regarding the automatic extraction and description of
system-level changes occurring between two subsequent
versions of a software system, some research has been con-
ducted to summarize changes occurring at a smaller granu-
larity [8], [13], [34]. Buse and Weimer proposed DeltaDoc [8],
a technique to generate a human-readable text describing
the behavioral changes caused by modifications to the body
of a method. Such an approach, however, does not capture
why the changes were performed. In this sense, Cortes-Coy
et al. [13] proposed ChangeScribe, a technique that describes
a given set of source code changes based on its stereotype,
type of changes and the impact set of the changes. Similarly,
Rastkar and Murphy [34] proposed a machine learning-
based technique to extract the content related to a code
change from a set of documents (e.g., bug reports or commit
messages). Differently from our approach, these summaries
focus on describing fine-grained changes at commit and
method level, respectively. ARENA is meant to identify and
summarize related sets of structural changes at the system
level and, where possible, link them to their motivation.

The automatic generation of release notes relies on ex-
tracting change information from software repositories and
issue tracking systems. More research work has been done
in this area, especially in the context of software evolution
[21]. Related to our approach is the work on traceability
link recovery between issues reported in issue trackers and
changes in versioning systems [5], [12], [15], [39]. While
ARENA employs similar techniques to extract change in-
formation, none of these approaches attempted to produce
a natural language description of the code changes linked
to the reports.

Concerning the summarization of other software arti-
facts, different approaches have been proposed to auto-
matically summarize bug reports [23], [24], [35]. The focus
of such approaches is on identifying and extracting the
most relevant sentences of bug reports by using supervised
learning techniques [35], network analysis [23], [24], and
information retrieval [24]. These summaries are meant to
reduce the content of bug reports. In a different way, the
bug report summaries included in the ARENA release notes
are meant to describe the changes occurred in the code of the
software systems in response to such reports. At source code
level, the automatic summarization research has focused on
describing OO artifacts, such as, classes and methods by
generating either term-based [14], [18], [26], [27], [37] or
text-based [28], [38] summaries. ARENA uses the approach
proposed by Moreno et al. [28] for generating text-based
descriptions of the classes added in the new version of the
software.

7 CONCLUSION AND FUTURE WORK

This paper described ARENA, a technique that combines
in a unique way source code analysis, summarization tech-
niques, and information mined from software repositories to
automatically generate complete release notes. ARENA has
been evaluated in four different studies, aimed at assessing



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

21

the completeness, importance, and usefulness of ARENA
releases notes, as well as letting developers use ARENA
within an ongoing project. The results obtained from the
four studies indicated that:

1) the ARENA release notes provide important content
that is not explicit or is missing in manual release
notes, as considered by professional and open-source
developers;

2) the ARENA release notes include more complete and
precise information than the manually-produced ones;
and

3) the extra information included by ARENA makes its
release notes to be considered more useful.

Based on the work done and the results obtained in our
studies, the research on release note generation moves into
a new arena, where additional research questions can be
investigated, such as: What is the most important information
to include in the release notes and how to classify it? How should
release notes be presented to users? These are just two items on
our future research agenda.

ARENA is currently implemented to work with Java-
based systems, using Jira as issue tracker and git as version-
ing system. Adapting it to work with software systems im-
plemented in other OO languages, using other issue trackers
and versioning systems is an additional engineering effort,
which we plan to undertake as future work. We will also
introduce in ARENA features that have been suggested
by participants to our studies, e.g., integrating a summary
of issue discussions and grouping together changes to re-
lated/similar classes. Finally, we will investigate a possible
integration with the approach proposed by Abebe et al. [1],
with the goal of highlighting in the release note the most
important changes brought by the new release.

ACKNOWLEDGMENTS

The authors would like to thank all the participants of
our four studies. Laura Moreno and Andrian Marcus are
supported in part by grants from the National Science Foun-
dation (CCF-1017263 and CCF-0845706). Gerardo Canfora
and Massimiliano Di Penta are partially supported by the
Markos project, funded by the European Commission under
Contract Number FP7-317743.

REFERENCES

[1] S. Abebe, N. Ali, and A. Hassan, “An empirical study of software
release notes,” Empirical Software Engineering, pp. 1–36, 2015.

[2] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: a text-based ap-
proach to classify change requests,” in Proceedings of the 2008
conference of the Centre for Advanced Studies on Collaborative Research,
October 27-30, 2008, Richmond Hill, Ontario, Canada, 2008, p. 23.

[3] G. Antoniol, M. Di Penta, and E. Merlo, “An automatic approach
to identify class evolution discontinuities,” in 7th International
Workshop on Principles of Software Evolution (IWPSE 2004), 6-7
September 2004, Kyoto, Japan. IEEE Computer Society, 2004, pp.
31–40.

[4] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and
source code artifacts,” in Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1, ICSE 2010,
Cape Town, South Africa, 1-8 May 2010. ACM, 2010, pp. 375–384.

[5] A. Bachmann, C. Bird, F. Rahman, P. T. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proceedings of
the 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010.
ACM, 2010, pp. 97–106.

[6] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[7] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swami-
nathan, “Mining email social networks,” in Proceedings of the 2006
International Workshop on Mining Software Repositories, MSR 2006,
Shanghai, China, May 22-23, 2006. ACM, 2006, pp. 137–143.

[8] R. P. Buse and W. R. Weimer, “Automatically documenting pro-
gram changes,” in Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering, ser. ASE ’10. New York,
NY, USA: ACM, 2010, pp. 33–42.

[9] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, “Social inter-
actions around cross-system bug fixings: the case of FreeBSD and
OpenBSD,” in Proceedings of the 8th International Working Conference
on Mining Software Repositories, MSR 2011, Waikiki, Honolulu, HI,
USA, May 21-28, 2011. IEEE, 2011, pp. 143–152.

[10] ——, “How changes affect software entropy: an empirical study,”
Empirical Software Engineering, 2012.

[11] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An XML-based
lightweight C++ fact extractor,” in 11th International Workshop on
Program Comprehension (IWPC 2003), May 10-11, 2003, Portland,
Oregon, USA. IEEE Computer Society, 2003, pp. 134–143.

[12] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K. Lukins, “Re-
covering traceability links between source code and fixed bugs via
patch analysis,” in Proceedings of the 6th International Workshop on
Traceability in Emerging Forms of Software Engineering, ser. TEFSE
’11. New York, NY, USA: ACM, 2011, pp. 31–37.

[13] L. Cortes-Coy, M. Linares-Vasquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summariza-
tion of source code changes,” in Source Code Analysis and Manipu-
lation (SCAM), 2014 IEEE 14th International Working Conference on,
Sept 2014, pp. 275–284.

[14] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, “Using ir methods for labeling source code artifacts:
Is it worthwhile?” in Program Comprehension (ICPC), 2012 IEEE
20th International Conference on, June 2012, pp. 193–202.

[15] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in 19th
International Conference on Software Maintenance (ICSM 2003), The
Architecture of Existing Systems, 22-26 September 2003, Amsterdam,
The Netherlands. IEEE Computer Society, 2003, pp. 23–.

[16] D. M. Germán, Y. Manabe, and K. Inoue, “A sentence-matching
method for automatic license identification of source code files,”
in ASE 2010, 25th IEEE/ACM International Conference on Auto-
mated Software Engineering, Antwerp, Belgium, September 20-24, 2010.
ACM, 2010, pp. 437–446.

[17] M. W. Godfrey and L. Zou, “Using origin analysis to detect
merging and splitting of source code entities,” IEEE Trans. Software
Eng., vol. 31, no. 2, pp. 166–181, 2005.

[18] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source
code,” in Proceedings of 17th IEEE Working Conference on Reverese
Engineering. Beverly, MA: IEEE CS Press, 2010, pp. 35–44.

[19] A. Hassan and R. Holt, “Architecture recovery of web applica-
tions,” in Software Engineering, 2002. ICSE 2002. Proceedings of the
24rd International Conference on, 2002, pp. 349–359.

[20] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature:
how misclassification impacts bug prediction,” in 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013. IEEE Computer Society, 2013, pp. 392–
401.

[21] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy
of approaches for mining software repositories in the context of
software evolution,” J. Softw. Maint. Evol., vol. 19, no. 2, pp. 77–
131, Mar. 2007.

[22] R. Koschke, “Atomic architectural component recovery for pro-
gram understanding and evolution,” in 18th International Confer-
ence on Software Maintenance (ICSM 2002), Maintaining Distributed
Heterogeneous Systems, 3-6 October 2002, Montreal, Quebec, Canada.
IEEE Computer Society, 2002, pp. 478–481.

[23] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ’hurried’
bug report reading process to summarize bug reports,” in 28th
IEEE International Conference on Software Maintenance, ICSM 2012,



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2591536, IEEE
Transactions on Software Engineering

22

Riva del Garda, Trento, Italy, September 23-28, 2012. IEEE Computer
Society, 2012, pp. 430–439.

[24] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum:
approach for unsupervised bug report summarization,” in Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New York, NY,
USA: ACM, 2012, pp. 11:1–11:11.

[25] O. Maqbool and H. A. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 759–780, 2007.

[26] P. W. McBurney, C. Liu, C. McMillan, and T. Weninger, “Improving
topic model source code summarization,” in Proceedings of the
22Nd International Conference on Program Comprehension, ser. ICPC
2014. New York, NY, USA: ACM, 2014, pp. 291–294.

[27] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,”
in Proceedings of the 22Nd International Conference on Program Com-
prehension, ser. ICPC 2014. New York, NY, USA: ACM, 2014, pp.
279–290.

[28] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language sum-
maries for Java classes,” in Proceedings of the IEEE International
Conference on Program Comprehension, ser. ICPC ’13. IEEE, 2013,
pp. 23–32.

[29] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2014. New York, NY, USA: ACM,
2014, pp. 484–495.

[30] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Jsum-
marizer: An automatic generator of natural language summaries
for java classes,” in Proceedings of the IEEE International Conference
on Program Comprehension, Formal Tool Demonstration, ser. ICPC ’13.
IEEE, 2013, pp. 230–232.

[31] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement. London: Pinter, 1992.

[32] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[33] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-
based reconstruction of complex refactorings,” in 26th IEEE Inter-
national Conference on Software Maintenance (ICSM 2010), September
12-18, 2010, Timisoara, Romania. IEEE Computer Society, 2010, pp.
1–10.

[34] S. Rastkar and G. C. Murphy, “Why did this code change?” in
Proceedings of the 2013 International Conference on Software Engineer-
ing, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp.
1193–1196.

[35] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: a case study of bug reports,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 505–514.

[36] J. Ratzinger, T. Sigmund, and H. Gall, “On the relation of refac-
torings and software defect prediction,” in Proceedings of the 2008
International Working Conference on Mining Software Repositories,
MSR 2008, Leipzig, Germany, May 10-11, 2008. ACM, 2008, pp.
35–38.

[37] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and
S. D’Mello, “Improving automated source code summarization
via an eye-tracking study of programmers,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 390–401.

[38] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary comments
for Java methods,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, ser. ASE ’10. New
York, NY, USA: ACM, 2010, pp. 43–52.

[39] J. Wu, A. E. Hassan, and R. C. Holt, “Comparison of clustering
algorithms in the context of software evolution,” in Proceedings of
21st IEEE International Conference on Software Maintenance. Bu-
dapest, Hungary: IEEE CS Press, 2005, pp. 525–535.

[40] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink: recovering
links between bugs and changes,” in SIGSOFT/FSE’11 19th ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(FSE-19) and ESEC’11: 13rd European Software Engineering Confer-
ence (ESEC-13), Szeged, Hungary, September 5-9, 2011. ACM, 2011,
pp. 15–25.


