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Abstract: Within this work, we upscale the equations that describe the pore-scale behaviour of
nonlinear porous elastic composites, using the asymptotic homogenization technique in order to
derive the macroscale effective governing equations. A porous hyperelastic composite can be thought
of as being comprised of a matrix interacting with a number of subphases and percolated by a
fluid flowing in the pores (which is chosen to be Newtonian and incompressible here). A general
nonlinear macroscale model is derived and is then specified for a particular choice of strain energy
function, namely the de Saint-Venant function. This leads to a macroscale system of PDEs, which is
of poroelastic type with additional terms and transformations to account for the nonlinear behaviour
of the material. Our new porohyperelastic-type model describes the effective behaviour of nonlinear
porous composites by prescribing the stress balance equations, the conservation of mass and Darcy’s
law. The coefficients of these macroscale equations encode the detailed microstructure of the material
and are to be found by solving pore-scale differential problems. The model reduces to the following
limit cases of (a) linear poroelastic composites when the deformation gradient approaches the identity,
(b) nonlinear composites when there are no pores and (c) nonlinear poroelasticity when only the
matrix–fluid interaction is considered. This model is applicable when the interactions between
various hyperelastic solid phases occur at the pore-scale, as in biological tissues such as artery walls,
the myocardium, lungs and liver.

Keywords: asymptotic homogenization; nonlinear elasticity; poroelastic composites; pore-scale

1. Introduction

The theory of poroelasticity can be used to describe the effective mechanical behaviour
of porous elastic materials with fluid flowing in the pores. This modelling approach can be
applied to materials undergoing both linear and nonlinear deformations. The linear theory
was developed by Biot in [1–4]. Due to the desire to apply poroelasticity to biological
tissues, the theory was adapted to nonlinearities in [5–8]. The poroelastic modelling frame-
work is applicable to a wide variety of physical scenarios, in particular to biological tissues,
where the deformations are in general nonlinear. For example, a poroelastic approach
has been taken to model organs such as lungs (see, e.g., [9]) and to consider the perfused
myocardium [10,11]. Poroelasticity has also been applied to studying the artery walls
(see, e.g., [12,13]). Nonlinear poroelasticity has also been applied to modelling tumour
growth [14] and in imaging to locate tumours in an incompressible medium [15]. It is
also of interest in porous thermoelasticity (see [16]). For a general overview of the mi-
cromechanics of porous media, we refer the reader to [17], where an overview of upscaling
techniques, the linear theory of porous media and also the extension of the analysis to the
nonlinear homogenization of a large range of scenarios including strength homogeniza-
tion, nonsaturated microporomechanics, microporoplasticity and microporofracture and
microporodamage theory were discussed.

We consider hyperelastic deformable porous media, and in general, these types of
materials have a variety of structural features characterised over multiple scales. We have
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a scale (called the pore-scale) where the interactions between the fluid and the solid take
place, and this scale is much smaller than the scale at which we describe the whole material
(which is called the macroscale).

The coupled fluid–structure balance equations that describe the material on the pore-
scale can be used in an upscaling process to obtain the macroscale governing equations
of a poroelastic material. The upscaling process can be carried out by a variety of homoge-
nization techniques. These homogenization techniques include effective medium theory,
mixture theory, volume averaging and asymptotic homogenization. These techniques were
discussed and described in [18,19].

We develop our analysis by means of the asymptotic homogenization technique [20–23].
This technique requires a sharp length-scale separation, between the pore-scale and the
macroscale, to enable the decoupling of spatial variations that exist in the system. This
technique expresses the relevant fields from the pore-scale fluid–structure interaction prob-
lem as power series of the ratio between the two different typical length scales. The balance
equations obtained via this method describe the effective behaviour of the material in the
homogenized macroscale domain. A key feature of this technique is that the coefficients of
the macroscale model encode information about the microstructure of the material, and
they are to be computed by solving differential problems at the pore-scale. In the literature,
the asymptotic homogenization technique has been applied to various physical systems.
For example, the asymptotic homogenization technique has been used to derive Biot’s
poroelasticity (see [24,25]) and extended to study vascularised poroelastic materials [26],
poroelastic composites [27] and modelling of the bones [28].

In the asymptotic homogenization literature, the majority of the applications focus on
linearised balance equations. This is due to the fact that in the linearised case, it is possible
to fully decouple the pore-scale and the macroscale (under some simplifying assumptions).
This decoupling then leads to a large reduction in the computational complexity of the
system. In the literature, the homogenization of systems involving nonlinear mechanics is
generally carried out by other homogenization techniques, such as average field techniques
(see, e.g., [29,30] and the references therein). These other techniques do not provide a
precise description of the model coefficients in the way that the asymptotic homogenization
technique can and, instead, provide bounds for the model coefficients. There are currently
only a few examples of using asymptotic homogenization in situations where the material
undergoes large deformations. In [31], the effective poroelastic model of Biot was extended
to a nonlinear Biot model that includes pore-scale deformation. In [32], a system of effective
equations that describe the flow, elastic deformation and transport in an active medium
was derived. The authors considered the spatial homogenization of a coupled transport
and fluid–structure interaction model. In [33], the asymptotic homogenization technique
was applied to the equations that describe the dynamics of a heterogeneous material
with an evolving microstructure to obtain a set of effective equations. The heterogeneous
body is assumed to be composed of two hyperelastic materials, and the evolution of the
microstructure is through plastic-like distortions.

We investigate materials that are subject to large deformations that have the underlying
microstructure comprised of both a hyperelastic-fluid-filled porous matrix and a number
of embedded hyperelastic subphases (fibres or inclusions). We then assume that both the
matrix and the subphases interact with each other and the fluid at the pore-scale. This
type of structure can be described as a poroelastic composite material that undergoes large
deformations. For example, this is applicable to artery walls, which can be considered
as a composite nonlinear elastic material consisting of a matrix with two families of
symmetrically arranged embedded collagen and elastin fibres as well as fibroblast cells
that interact with the fluid that is flowing in the pores [12,34–37]. If we wish to consider
the artery walls in our framework, then the matrix can be identified with our matrix in the
model, and the fibres and fibroblast cells could all be considered as the elastic subphases
that are embedded in the matrix. The fluid in this setting would be the water that flows in
the pores of the matrix. This modelling approach is applicable to the myocardium in the
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heart, which is a nonlinear elastic porous structure that consists of a matrix with muscle
cells, fibroblasts, collagen fibres and embedded blood vessels [10,11,38]. Again, here, the
various muscle cells, fibroblasts and fibres would all be the elastic subphases embedded in
the matrix. By considering these systems as poroelastic composites, we are able to account
for the mechanical contribution of each of the various phases individually.

Here, we generalise [27] to account for nonlinear deformations by using the asymptotic
homogenization technique to upscale the interaction between a hyperelastic porous matrix
where there is an incompressible Newtonian fluid flowing in the pores and a number of
embedded hyperelastic subphases. We make the assumption that both the hyperelastic
matrix and subphases interact with the fluid that is flowing in the pores. We assume that
the length scale where the individual hyperelastic subphases are clearly visible from the
surrounding matrix is comparable to the pore size. We therefore determine that this scale
will be the pore-scale of the material, that is the distance between adjacent subphases is
comparable with the size of the pores. This length is assumed to be much smaller than the
size of the whole domain, which is denoted the macroscale. The upscaling process is then
used taking into account the continuity of the stresses and elastic displacements across the
interfaces between the matrix and the subphases, as well as the continuity of the stresses
and velocities across the interfaces between the fluid and solid domains. Furthermore,
an appropriate coordinate transformation is carried out on some quantities to formulate the
full problem in the undeformed/reference configuration, i.e., by solely using Lagrangian
coordinates. The resulting system of governing equations is of poroelastic type and is a
generalization of the formulations for (a) multiphase elastoplastic composites [33] in the
limit of no plastic distortions and (b) the formulations for hyperelastic porous media [31]
in the limit of only one elastic phase. It is also a natural extension to the formulation
for linear poroelastic composites [27]. All three of these formulations are recovered as
particular cases by assuming that: (a) our matrix is not porous; (b) that no elastic phase
other than the matrix is present; and (c) by performing a linearisation. The coefficients of
the model encode the properties of the microstructure and are computed by solving local
differential problems.

The paper is organised as follows. In Section 2, we formulate the fluid–structure
interaction problem that characterises the behaviour of the hyperelastic porous matrix,
the hyperelastic subphases and the fluid flowing in the pores. We also perform a change
of coordinates, which allows the fluid–structure interaction problem to be formulated
in the reference configuration. In Section 3, we apply the asymptotic homogenization
technique to the system of PDEs that were described in Section 2 and determine the
new model that describes the effective macroscale mechanical behaviour of nonlinear
poroelastic composites. In Section 4, we discuss the general nonlinear macroscale model
before prescribing a specific strain energy function, namely the de Saint-Venant, for the
material and then give a physical interpretation of the novel terms. We also consider
particular cases for our new model and are able to obtain previously known models from
the literature. Section 5 concludes our work by highlighting and discussing the limitations
of the current model and by providing further directions in which the model could be
extended for particular biological applications.

2. Formulation of the Fluid–Structure Interaction Problem

We assume that we have a continuum body that is not subject to any surface or body
forces to have a reference configuration, which we denote by B0 ∈ R3. The body B0 has
a periodic microstructure that consists of the union of a porous hyperelastic matrix Ω0

II,
an interconnected fluid compartment Ω0

f and a set Ω0
I of K disjoint hyperelastic subphases

Ω0
α, where:

Ω0
I =

K⋃
α=1

Ω0
α, (1)
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and Ω̄0 = Ω̄0
I ∪ Ω̄0

II ∪ Ω̄0
f . We note that when any domain, interface or normal vector has the

superscript 0 then it is in the reference configuration. We provide a sketch of this structure
as shown in Figure 1. The body undergoes a deformation described by the deformation
function χ, and the deformed body is denoted by Bt. Each point x ∈ Bt is such that
x = χ(X, t) with X ∈ B0 being the point in the reference configuration. We assume that
the periodicity of the body’s microstructure is preserved during the deformation, and
we now denote the deformed solid porous matrix as Ωt

II, the deformed connected fluid
compartment as Ωt

f and the set of K disjoint deformed subphases Ωt
α as Ωt

I in Bt. When
any domain, interface or normal vector has the superscript t, this denotes the current
configuration. The deformation from B0 to Bt is described by the deformation gradient
F = Gradχ. Figure 1 highlights the description of this structure pictorially.

We now wish to describe the equations for the fluid and the solid compartments and
the interface conditions in our structure. These equations however are not all in the same
coordinate systems. We wish to work in the reference configuration so we have to perform
a pull back to some of the equations that are described in the current configuration. We
begin by describing all equations in their natural coordinate systems before discussing the
coordinate transformations.

The balance equations for the various hyperelastic domains Ωα and ΩII can be written
as, ∀α = 1, . . . , K,

∇X · σα = 0 in Ω0
α, (2)

and:
∇X · σII = 0 in Ω0

II, (3)

where we neglect any volume forces and inertia. The tensors σα and σII are the solid
stresses. Each subphase Ωα has the stress tensor σα, and the porous matrix ΩII has solid
stress tensor σII. The matrix and the subphases are anisotropic, hyperelastic solids, and
therefore, the constitutive laws for σα and σII are given in terms of strain energy functions,

σα =
∂ψα

∂Fα
in Ω0

α, (4)

σII =
∂ψII

∂FII
in Ω0

II, (5)

where Fα and FII are the deformation gradients in the subphases and the matrix, respectively,
and ψα and ψII are the strain energy functions in the subphases and matrix, respectively.
We do not define a specific strain energy function at this stage and wait until Section 4.1
to specify it.

We also require equations for the fluid phase. The balance equation is given as:

∇x · σf = 0 in Ωt
f, (6)

where we denoted the fluid stress tensor by σf. The fluid is assumed to be an incompressible
Newtonian fluid and, so, has the constitutive law:

σf = −pI + µ((∇xv) + (∇xv)T) in Ωt
f, (7)

where v is the fluid velocity, p is the fluid pressure and µ is the fluid viscosity. As we
consider an incompressible fluid, the incompressibility condition reads:

∇x · v = 0 in Ωt
f. (8)

We can substitute the constitutive law (7) into the balance Equation (6), and then, by
using (8), we obtain the Stokes problem:

0 = −∇x p + µ∇x · ((∇xv) + (∇xv)T) in Ωt
f. (9)
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In order to set up an appropriate fluid–structure interaction problem, we require
interface conditions between the fluid and the various solid phases and also interface
conditions between the various solid subphases and the matrix. The conditions we impose
are the continuity of velocities, the continuity of stresses and the continuity of displace-
ments. This presents an issue since the fluid and solid equations are described in different
coordinate systems. The fluid equations are currently presented in Eulerian coordinates
and the solid equations in Lagrangian coordinates. It is not possible to properly express
continuity on the interface between the fluid and solid whilst the governing equations are
in different coordinate systems. For this reason, we only describe the interface conditions
between the elastic subphases and the matrix here and wait until Section 2.1 to describe the
interface conditions between the fluid and solids once we have formulated all equations in
Lagrangian coordinates. We define the interface between each elastic subphase and the
matrix as Γ0

αII := ∂Ω0
α ∩ ∂Ω0

II and impose continuity of stresses and displacements, namely:

σαn0
αII = σIIn0

αII on Γ0
αII, (10)

uα = uII on Γ0
αII, (11)

∀α = 1, . . . , K, where we define the unit vector normal to the interface Γ0
αII as n0

αII, and it is
pointing into the subphase Ω0

α and where uα and uII are the elastic displacements in each
subphase and the matrix, respectively.

We describe the deformation from B0 to Bt by the deformation gradient F = Gradχ.
For convenience, we use the notation:

F =


Fα in Ω0

α,

FII in Ω0
II,

Ff in Ω0
f .

(12)

Figure 1. A 2D sketch that shows the poroelastic composite microstructure of the body in the
reference configuration B0. It also shows the deformation F and gives the resulting microstructure of
the deformed/current configuration Bt. In both configurations, the porous matrix is shown in red,
the subphases in green and the fluid in blue.

We note that our deformation gradient is in general discontinuous. It is however
useful here to consider the alternative definition of the deformation gradient:

F = I + Gradu, (13)

where I is the identity tensor and Gradu is the gradient operator of the elastic displace-
ment. We use the notation Grad with a capital G to denote the gradient in Lagrangian
coordinates and grad for Eulerian coordinates. We can specialise relationship (13) in each
of the reference elastic subphases as follows:
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F =

{
Fα = I + Graduα in Ω0

α,

FII = I + GraduII in Ω0
II,

(14)

We should note that the sketch here highlights a number of possible arrangements for
the subphases. We can have subphases fully embedded in the matrix, fully embedded in
the fluid or in contact with both the matrix and the fluid. We set up our fluid–structure
interaction with the assumption that all elastic phases are in contact with each other and
the fluid.

2.1. Fluid–Structure Interaction in Lagrangian Coordinates

Within this section, we apply a coordinate transformation to the equations in the
fluid–structure interaction (FSI) in order to obtain a full system of PDEs that describe the
structure in the reference configuration. We do this in order to preserve the local periodicity
of the microstructure, as was done in [32]. We define the Piola transformation, G, and the
Jacobian, J, by:

J = detF and G = JF−1, (15)

where we have that:

G =


Gα = JαF−1

α in Ω0
α,

GII = JIIF−1
II in Ω0

II,

Gf = JfF
−1
f in Ω0

f .

(16)

Here, we wish to make a remark regarding the continuity of the Piola transformation.

Remark 1 (Continuity of GT). Here, we wish to explain the continuity of GT across the various
interfaces appearing in our structure. We begin with Nanson’s formula:

nda = JF−TNdA, (17)

where n is a general unit normal and da is a general area element in the current configuration and
N is a general unit normal and dA is a general area element in the reference configuration. Using
our notation for the Piola transform, we can rewrite this as:

nda = GTNdA. (18)

By using this relationship, we are able to deduce the continuities on our various interfaces Γα,
ΓII and ΓαII, that is,

GT
α n0

α = GT
f n0

α on Γα, GT
II n

0
II = GT

f n0
II on ΓII,

and GT
α n0

αII = GT
II n

0
αII on ΓαII.

(19)

These formulas are used in later sections of this work.

We use the following formulas to make the change of the coordinate systems. For a
scalar ξ, a vector a and a tensor A, we have:

∇xξ = F−T∇Xξ and ∇xa = (∇Xa)F−1. (20)

By again using Nanson’s formula:

nda = JF−TNdA, (21)

the transformation rule for a general volume element:

dv = JdV, (22)
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and by applying the divergence theorem, we obtain the coordinate changes:

∇x · a =
1
J
∇X · (Ga) and ∇x ·A =

1
J
∇X · (AGT). (23)

We are now able to use (20) and (23) to write our FSI problem in the reference con-
figuration. The equations governing the fluid in the reference configuration are therefore
given by:

∇X · (σfG
T
f ) = 0 in Ω0

f , (24)

with the fluid stress tensor σf transformed as:

σfG
T
f = −pGT

f + µ((∇XV)F−1
f GT

f + F−T
f (∇XV)TGT

f ) in Ω0
f , (25)

to correspond to the fluid balance equation, where V is the fluid velocity in the reference
configuration. The incompressibility condition also transforms as follows:

∇X · (GfV) = 0 in Ω0
f . (26)

The Stokes’ problem in the reference configuration is obtained by substituting (25)
into (24) and using (26), that is,

0 = −GT
f ∇X p + µ∇X · ((∇XV)GfF

−T
f + GT

f (∇XV)TF−T
f ) in Ω0

f . (27)

Now that all our governing equations are described in the Lagrangian framework,
we are able to describe the interface conditions between the fluid and solid phases that
we require to set up an appropriate FSI problem. We note that these interface conditions
take place on the interfaces between the fluid and the elastic subphases in the reference
configuration. Defining the interfaces between the fluid phase and each of the α subphases
in the reference configuration as Γ0

α := ∂Ω0
α ∩ ∂Ω0

f and defining the interface between
the matrix and the fluid phase, again in the reference configuration, as Γ0

II := ∂Ω0
II ∩ ∂Ω0

f ,
we can impose the continuity of the velocities and stresses on the various interfaces. We
therefore have:

∂uα

∂t
= V on Γ0

α, (28)

σfG
T
f n0

α = σαn0
α on Γ0

α, (29)
∂uII

∂t
= V on Γ0

II, (30)

σfG
T
f n0

II = σIIn0
II on Γ0

II, (31)

∀α = 1, . . . , K. We have that ∂uα/∂t and ∂uII/∂t are the solid velocities in each of the
subphases and the matrix, respectively. We have that n0

α and n0
II are the unit outward

normals to the interfaces Γ0
α and Γ0

II, respectively.
Our complete FSI problem in the reference configuration is therefore given by (2)–(5),

(10), (11), (14) and (24)–(31).
Within the next section, we carry out our analysis by first nondimensionalising the

system of partial differential equations (PDEs) that we formulate in the reference config-
uration within this section. We introduce two well-separated length scales that allow us
to apply the two-scale asymptotic homogenization technique to the nondimensionalised
PDEs. This allows the derivation of the macroscale governing equations.
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3. The Asymptotic Homogenization Method

Here, we summarise the fluid–structure interaction problem in the reference config-
uration that we introduced in the previous section. We will then be ready to perform a
multiscale analysis.

∇X · σα = 0 in Ω0
α, (32)

∇X · σII = 0 in Ω0
II, (33)

∇X · (σfG
T
f ) = 0 in Ω0

f , (34)

∇X · (GfV) = 0 in Ω0
f , (35)

∂uα

∂t
= V on Γ0

α, (36)

∂uII

∂t
= V on Γ0

II, (37)

σfG
T
f n0

α = σαn0
α on Γ0

α, (38)

σfG
T
f n0

II = σIIn0
II on Γ0

II, (39)

σαn0
αII = σIIn0

αII on Γ0
αII. (40)

uα = uII on Γ0
αII, (41)

We have that the constitutive relationships for the fluid and the multiple solid phases
are given as:

σfG
T
f = −pGT

f + µ((∇XV)F−1
f GT

f + F−T
f (∇XV)TGT

f ) in Ω0
f , (42)

σα =
∂ψα

∂Fα
in Ω0

α, (43)

σII =
∂ψII

∂FII
in Ω0

II. (44)

We then use the constitutive relationship (42) with the incompressibility constraint (35)
in the balance Equation (34) to obtain:

0 = −GT
f ∇X p + µ∇X · ((∇XV)GfF

−T
f + GT

f (∇XV)TF−T
f ) in Ω0

f . (45)

We also have the deformation gradients for each of the solid phases:

Fα = I +∇Xuα in Ω0
α, (46)

FII = I +∇XuII in Ω0
II, (47)

∀α = 1, . . . , K. We assume that the system possesses two distinct length scales. The whole
domain has a length scale, which we denote by L, and this is referred to as the macroscale.
There also exists a second length scale, which we denote by d, and this describes the pore-
scale. The length d is comparable to the intersubphase distance and the size of the pores.
Therefore, to capture the true difference between the two scales, it is useful to perform a
nondimensional analysis of the system of PDEs (32)–(47). This nondimensionalisation is
carried out in the next section.

We should note that this fluid–structure interaction is the nonlinear counterpart to the
one found in [27] for linear poroelastic composites. We also highlight that this FSI problem
is formulated with the intention that all elastic phases are in contact with each other and
the fluid.

3.1. Nondimensionalisation

We carry out the nondimensionalisation process by relying on the standard parabolic
fluid velocity in the pores, which is quadratic in the pore-scale d and proportional to a
given pressure gradient C. This scaling is the classical one, which ensures that a Newtonian
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fluid flowing in the pores is macroscopically governed by porous media flow equations
(e.g., of Darcy’s type) (see [39], where this is discussed). There are of course alternative
scalings available for the fluid velocity; however, these scalings do not account for the
appropriate effective behaviour of a fluid flow in porous media.

Therefore, we choose the scalings:

x = Lx′, uα = Lu′α, uII = Lu′II, V =
Cd2

µ
V′, p = CLp′, σα = CLσα

′,

σII = CLσII
′.

(48)

We then use (48), and the gradient operator becomes:

∇ =
1
L
∇′, (49)

and the nondimensionalised form of the system of the PDEs (32)–(41) is given by,

∇X · σα = 0 in Ω0
α, (50)

∇X · σII = 0 in Ω0
II, (51)

∇X · (σfG
T
f ) = 0 in Ω0

f , (52)

∇X · (GfV) = 0 in Ω0
f , (53)

∂uα

∂t
= V on Γ0

α, (54)

∂uII

∂t
= V on Γ0

II, (55)

σfG
T
f n0

α = σαn0
α on Γ0

α, (56)

σfG
T
f n0

II = σIIn0
II on Γ0

II, (57)

σαn0
αII = σIIn0

αII on Γ0
αII, (58)

uα = uII on Γ0
αII. (59)

We also nondimensionalise the constitutive relationships for the fluid and the solid,
and these are given by:

σfG
T
f = −pGT

f + ε2((∇XV)F−1
f GT

f + F−T
f (∇XV)TGT

f ) in Ω0
f , (60)

σα =
∂ψα

∂Fα
in Ω0

α, (61)

σII =
∂ψII

∂FII
in Ω0

II. (62)

We also have the nondimensionalised fluid balance equation and solid deformation
gradients given by:

0 = −GT
f ∇X p + ε2∇X · ((∇XV)GfF

−T
f + GT

f (∇XV)TF−T
f ) in Ω0

f , (63)

Fα = I +∇Xuα in Ω0
α, (64)

FII = I +∇XuII in Ω0
II, (65)

where in (50)–(65), we drop the primes for the sake of a simpler notation, and we have
the parameter:

ε =
d
L

. (66)

Within the next section, we introduce the two-scale asymptotic homogenization
technique, which we then use to upscale our system (50)–(65) in order to obtain our
macroscale model.
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3.2. The Two-Scale Asymptotic Homogenization Method

Here, we now introduce the asymptotic homogenization technique, which we will
use to derive the effective macroscale governing equations for our structure. As described
above, we have the pore-scale, denoted by d, and the macroscale, which is the average size
of the whole material, denoted by L. We assume that these scales are well separated, i.e.,

ε =
d
L
� 1. (67)

We can describe ε as the scale separation parameter. We require a local scale spatial
variable, which will capture the pore-scale variations of each of the fields appearing
in (50)–(65), that is,

Ȳ =
X
ε

. (68)

We also have the macroscale variable:

X̄ = X. (69)

The newly introduced spatial variables X̄ and Ȳ represent the macroscale and the pore-
scale respectively and are to be considered formally independent. The gradient operator
also transforms, by the application of the chain rule, to become an operator of both scales,
which we can write as:

∇X → ∇X̄ +
1
ε
∇Ȳ. (70)

We also make the assumption that all the fields in (50)–(65), ∀α = 1, ..., K, are functions
of the two spatial variables X̄ and Ȳ and that every field can be written as a power series
expansion in ε:

ϕε(X̄, Ȳ, t) =
∞

∑
l=0

ϕ(l)(X̄, Ȳ, t)εl , (71)

where ϕ is used to denote a general field in (50)–(65).

Remark 2 (Pore-scale periodicity). We assume that every field ϕ(l) in our analysis is Ȳ-periodic,
and this allows us to focus our attention on a single periodic cell in our structure. This is a technical
assumption that is related solely to the microscale. The fields can still vary with respect to the
macroscale. Making this assumption means that we formulate the pore-scale differential problems
on this periodic cell, and it is these problems that are to be solved to determine the macroscale model
coefficients. In [40], the authors assumed that all the fields are periodic in the pore-scale variable and
are able to compute the coefficients of the model of standard poroelasticity obtained via asymptotic
homogenization. In comparison, in [41], the macroscale model of poroelasticity was solved. As such,
although the effective coefficients used are those computed by following the methodology described
in [40], the illustrated solution solely depends on the macroscale and is in general not periodic. It is
possible to relax this assumption that all fields are Ȳ-periodic and assume instead that all the fields
are locally bounded. This assumption is less strict than local periodicity and means that all the fields
are finite with respect to the pore-scale variable Ȳ when ε→ 0, but not necessarily periodic. This
assumption however only permits the functional form of the macroscale model to be derived and
does not in general allow for the model coefficients to be computed without further assumptions
(see [21,23] for further details) in multidimensional problems [23].

We have that our periodic cell could potentially contain a variety of subphases and these
subphases could possess various geometries and elastic properties. This assumption is particularly
useful as it allows us to solve the differential problems obtained from the asymptotic homogenization
technique on a single periodic cell instead of the whole material domain, therefore reducing the
computational complexity. This periodic cell where we solve the differential problems is shown in
Figure 2.
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Remark 3 (Macroscopic uniformity). We know that the pore-scale structure of a material can
vary with respect to the macroscale position (see [21,25,39,42,43]). In general, this dependence is
neglected in the literature due to wanting to simplify the analysis. Here, we assume that the pore-
scale geometry does not depend on the macroscale variable X̄, i.e., the material is macroscopically
uniform. This assumption allows for simple differentiation under the integral sign to take place,
that is: ∫

Ω
∇X̄ · (•) = ∇X̄ ·

∫
Ω
(•). (72)

If we do not assume macroscopic uniformity, then (72) is not satisfied, and in this case, the
application of the Reynolds’ transport theorem is required. This may lead to additional terms
appearing in the macroscale governing equations.

Remark 4 (Pore-scale geometry). In our description so far, we assume that there are various
different subphases included within our periodic cell; however, without loss of generality, we can
focus our attention on the case where each periodic cell contains only one hyperelastic subphase.
This structure is shown in Figure 3. Therefore, we do not require the index α, and the notation
can be adjusted as follows. We have the continuum body B0, which has a periodic microstructure.
Within B0, we have many periodic cells; however, due to periodicity, we can identify the domain
Ω0 with the periodic cell, which has a hyperelastic subphase, hyperelastic matrix and fluid portions
denoted by Ω0

I , Ω0
II and Ω0

f , respectively. We are also able to simplify the notation we use for
the different interfaces. The interface between the subphase and the fluid is Γ0

I := ∂Ω0
I ∩ ∂Ω0

f ;
the interface between the matrix and the fluid is Γ0

II := ∂Ω0
II ∩ ∂Ω0

f ; the interface between our two
hyperelastic solid phases is Γ0

III := ∂Ω0
I ∩ ∂Ω0

II, with corresponding unit normal vectors n0
I , n0

II

and n0
III. If a specific application required multiple subphases to be contained in the periodic cell, then

it would be simple to extend the formulation, as has been done in the case of elastic composites [44].

Figure 2. A 2D cross-section of a single periodic cell in our structure. We have the fluid represented
in blue, the hyperelastic porous matrix in red and the hyperelastic subphases in green. We highlight
that the subphases Ωα for α = 1, . . . , K can interact with both the matrix and the fluid or be fully
embedded in the either the matrix or the fluid.

Figure 3. This is a sketch of a 2D cross-section of the periodic cell on which we focus. We have one
hyperelastic subphase shown in green that is in contact with the hyperelastic matrix shown in red
and the fluid shown in blue. We also highlight the interfaces ΓI, ΓII and ΓIII between the phases.
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3.3. The Macroscale Results

The assumptions (70) and (71) of the asymptotic homogenization technique can be
applied to Equations (50)–(65). We then obtain the following multiscale system of PDEs:

∇Ȳ · σε
I + ε∇X̄ · σε

I = 0 in Ω0
I , (73)

∇Ȳ · σε
II + ε∇X̄ · σε

II = 0 in Ω0
II, (74)

∇Ȳ · (σf
ε(Gε

f )
T) + ε∇X̄ · (σf

ε(Gε
f )

T) = 0 in Ω0
f , (75)

∇Ȳ · (Gε
f Vε) + ε∇X̄ · (Gε

f Vε) = 0 in Ω0
f , (76)

∂uε
I

∂t
= Vε on Γ0

I , (77)

∂uε
II

∂t
= Vε on Γ0

II, (78)

σf
ε(Gε

f )
Tn0

I = σε
I n0

I on Γ0
I , (79)

σf
ε(Gε

f )
Tn0

II = σε
IIn

0
II on Γ0

II, (80)

σε
I n0

III = σε
IIn

0
III on Γ0

III, (81)

uε
I = uε

II on Γ0
III, (82)

as well as the multiscale constitutive equations for σf
ε(Gε

f )
T, σε

I and σε
II , which are given by:

σf
ε(Gε

f )
T =− pε(Gε

f )
T + ε((∇ȲVε)(Fε

f )
−1(Gε

f )
T + (Fε

f )
−T(∇ȲVε)T(Gε

f )
T)

+ ε2((∇X̄Vε)(Fε
f )
−1(Gε

f )
T + (Fε

f )
−T(∇X̄Vε)T(Gε

f )
T) in Ω0

f , (83)

σε
I =

∂ψε
I

∂Fε
I

in Ω0
I , (84)

σε
II =

∂ψε
II

∂Fε
II

in Ω0
II, (85)

and the fluid balance equation and the solid deformation gradients are given by:

0 = −(Gε
f )

T(ε∇X̄ pε +∇Ȳ pε) + ε∇Ȳ · ((∇ȲVε)Gε
f (F

ε
f )
−T

+ (Gε
f )

T(∇ȲVε)T(Fε
f )
−T) + O(ε2) in Ω0

f , (86)

εFε
I = εI + ε∇X̄uε

I +∇Ȳuε
I in Ω0

I , (87)

εFε
II = εI + ε∇X̄uε

II +∇Ȳuε
II in Ω0

II, (88)

where the power series representation (71) is implied in Equations (73)–(88) through the
use of the superscript ε. We then proceed with the technique by equating the coefficients of
εl for l = 0, 1, ..., and this way, we derive the effective macroscale model in terms of the
relevant zeroth-order fields. Following the asymptotic expansion, if any term still retains a
dependence on the pore-scale, then we can apply the integral average formula. The integral
average can be defined as:

〈ϕ〉i =
1
|Ω0|

∫
Ω0

i

ϕ(X̄, Ȳ, t)dȲ i = f, I, II, (89)

and again, ϕ is a general field. The integral average is performed over one representative
cell due to the assumption of Ȳ-periodicity, as discussed in Remark 2, so it is therefore a cell
average. We have that the volume of the domain is given by |Ω0| = |Ω0

f |+ |Ω
0
I |+ |Ω0

II|.
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We can equate the coefficients of ε0 in (73)–(82) to obtain:

∇Ȳ · σ(0)
I = 0 in Ω0

I , (90)

∇Ȳ · σ(0)
II = 0 in Ω0

II, (91)

∇Ȳ · (σf
(0)(G

(0)
f )T) = 0 in Ω0

f , (92)

∇Ȳ · (G(0)
f V(0)) = 0 in Ω0

f , (93)

∂u(0)
I

∂t
= V(0) on Γ0

I , (94)

∂u(0)
II

∂t
= V(0) on Γ0

II, (95)

σf
(0)(G

(0)
f )Tn0

I = σ
(0)
I n0

I on Γ0
I , (96)

σf
(0)(G

(0)
f )Tn0

II = σ
(0)
II n0

II on Γ0
II, (97)

σ
(0)
I n0

III = σ
(0)
II n0

III on Γ0
III, (98)

u(0)
I = u(0)

II on Γ0
III. (99)

The constitutive Equations (83)–(85) have coefficients of ε0 given by:

σf
(0)(G

(0)
f )T = −p(0)(G(0)

f )T in Ω0
f , (100)

σ
(0)
I =

∂ψ
(0)
I

∂F(0)
I

in Ω0
I , (101)

σ
(0)
II =

∂ψ
(0)
II

∂F(0)
II

in Ω0
II, (102)

and the fluid balance equation and the deformation gradients (86)–(88) have coefficients
of ε0:

(G
(0)
f )T∇Ȳ p(0) = 0 in Ω0

f , (103)

∇Ȳu(0)
I = 0 in Ω0

I , (104)

∇Ȳu(0)
II = 0 in Ω0

II, (105)

Now, equating the coefficients of ε1 in Equations (73)–(82) gives:

∇Ȳ · σ(1)
I +∇X̄ · σ(0)

I = 0 in Ω0
I , (106)

∇Ȳ · σ(1)
II +∇X̄ · σ(0)

II = 0 in Ω0
II, (107)

∇Ȳ · (σf
(1)(G

(0)
f )T) +∇Ȳ · (σf

(0)(G
(1)
f )T) +∇X̄ · (σf

(0)(G
(0)
f )T) = 0 in Ω0

f , (108)

∇Ȳ · (G(0)
f V(1)) +∇Ȳ · (G(1)

f v(0)) +∇X̄ · (G(0)
f V(0)) = 0 in Ω0

f , (109)

∂u(1)
I

∂t
= V(1) on Γ0

I , (110)

∂u(1)
II

∂t
= V(1) on Γ0

II, (111)

(σf
(1)(G

(0)
f )T + σf

(0)(G
(1)
f )T)n0

I = σ
(1)
I n0

I on Γ0
I , (112)

(σf
(1)(G

(0)
f )T + σf

(0)(G
(1)
f )T)n0

II = σ
(1)
II n0

II on Γ0
II, (113)

σ
(1)
I n0

III = σ
(1)
II n0

III on Γ0
III, (114)

u(1)
I = u(1)

II on Γ0
III, (115)
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and the coefficients of ε1 in the constitutive Equations (83)–(85) are:

σf
(1)(G

(0)
f )T + σf

(0)(G
(1)
f )T = −p(1)(G(0)

f )T − p(0)(G(1)
f )T

+((∇ȲV(0))(F(0)
f )−1(G

(0)
f )T + (F(0)

f )−T(∇ȲV(0))T(G
(0)
f )T) in Ω0

f , (116)

σ
(1)
I =

∂ψ
(1)
I

∂F(1)
I

in Ω0
I , (117)

σ
(1)
II =

∂ψ
(1)
II

∂F(1)
II

in Ω0
II, (118)

while the fluid balance equation and the deformation gradients (86)–(88) have coefficients
of ε1:

0 = −(G(0)
f )T(∇X̄ p(0) +∇Ȳ p(1)) +∇Ȳ · ((∇ȲV(0))G

(0)
f (F(0)

f )−T

+(G
(0)
f )T(∇ȲV(0))T(F(0)

f )−T) in Ω0
f , (119)

F(0)
I = I +∇X̄u(0)

I +∇Ȳu(1)
I in Ω0

I , (120)

F(0)
II = I +∇X̄u(0)

II +∇Ȳu(1)
II in Ω0

II. (121)

We can show that the Piola transformation (Gε)T, where we exploit the notation (16),
is divergence free and derive some useful identities. We have:∫

B0

∇X · GTdVX =
∫

∂B0

GT ·NdA =
∫

∂B0

JF−TNdA =
∫

∂Bt
I · nda

=
∫
Bt
∇x · IdVx = 0, (122)

and so, (Gε)T is divergence free. We can also consider the expansion of (Gε)T, which is:

(Gε)T = (G(0))T + ε(G(1))T + o(ε2), (123)

and the expansion of ∇X · (Gε)T is:

(ε∇X̄ +∇Ȳ) · ((G(0))T + ε(G(1))T + o(ε2)) = 0. (124)

Then, equating the coefficient of ε0 gives:

∇Ȳ · (G(0))T = 0, (125)

and equating the coefficient of ε1 gives:

∇X̄ · (G(0))T +∇Ȳ · (G(1))T = 0 =⇒ ∇X̄ · (G(0))T = −∇Ȳ · (G(1))T. (126)

We can use the notation (16) to write (125) and (126) as their counterparts in each of
the solid domains and the fluid domain as:

∇Ȳ · (G(0)
I )T = 0, ∇Ȳ · (G(0)

II )T = 0, ∇Ȳ · (G(0)
f )T = 0, (127)

and:
∇X̄ · (G(0)

I )T = −∇Ȳ · (G(1)
I )T, ∇X̄ · (G(0)

II )T = −∇Ȳ · (G(1)
II )T,

∇X̄ · (G(0)
f )T = −∇Ȳ · (G(1)

f )T.
(128)
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Here, we also wish to perform the multiscale expansion of (19). We have:

(Gε
I )

Tn0
I = (Gε

f )
Tn0

I on ΓI, (Gε
II)

Tn0
II = (Gε

f )
Tn0

II on ΓII,

(Gε
I )

Tn0
III = (Gε

II)
Tn0

III on ΓIII,
(129)

and equating the coefficients of ε0 gives:

(G
(0)
I )Tn0

I = (G
(0)
f )Tn0

I on ΓI, (G
(0)
II )Tn0

II = (G
(0)
f )Tn0

II on ΓII,

(G
(0)
I )Tn0

III = (G
(0)
II )Tn0

III on ΓIII.
(130)

Similarly, equating the coefficients of ε1 gives:

(G
(1)
I )Tn0

I = (G
(1)
f )Tn0

I on ΓI, (G
(1)
II )Tn0

II = (G
(1)
f )Tn0

II on ΓII,

(G
(1)
I )Tn0

III = (G
(1)
II )Tn0

III on ΓIII.
(131)

Equating higher powers of epsilon leads to the continuity at higher orders also. We
use these expressions in later sections.

We can see using (92), (100) and (125) that (G(0)
f )T∇Ȳ p(0) = 0. This implies that p(0)

does not depend on the pore-scale Ȳ, that is:

p(0) = p(0)(X̄, t) (132)

We can deduce from (104) and (105) that u(0)
I and u(0)

II do not depend on the pore-scale
Ȳ, that is,

u(0)
I = u(0)

I (X̄, t), (133)

u(0)
II = u(0)

II (X̄, t), (134)

and since we have the boundary condition (99), we can write:

u(0) = u(0)
I = u(0)

II . (135)

We use (132) and (135) throughout the remainder of this work.

3.4. The Macroscale Fluid Flow

We can investigate the leading order velocity, which we denote by v(0). We begin by
defining the relative fluid–solid displacement, w, as:

w := V(0) − ∂u(0)

∂t
. (136)

We can rearrange (136) to obtain:

V(0) = w + u̇(0) (137)

We are then able to use (137) and Equations (93)– (95), (100), (108) and (116) to form a
Stokes’-type boundary value problem given by:

−(G(0)
f )T(∇X̄ p(0) +∇Ȳ p(1)) +∇Ȳ ·

(
(∇Ȳw)G

(0)
f (F(0)

f )−T

+(G
(0)
f )T(∇Ȳw)T(F(0)

f )−T) = 0 in Ω0
f , (138)

∇Ȳ · (G(0)
f w) = 0 in Ω0

f , (139)

w = 0 on Γ0
I ∪ Γ0

II. (140)
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The boundary value problem (138)–(140) admits a solution. Exploiting linearity,
the solution is given by:

w = −W∇X̄ p(0), (141)

p(1) = −P∇X̄ p(0) + c(X̄), (142)

where p(1) is defined up to an arbitrary Ȳ-constant function given by c(X̄). The second
rank tensor W and the vector P are the solution to the cell problem given by:

∇Ȳ ·
(
(∇ȲW)G

(0)
f (F(0)

f )−T + (G
(0)
f )T(∇ȲW)T(F(0)

f )−T)
+(G

(0)
f )T(I−∇ȲP) = 0 in Ω0

f , (143)

∇Ȳ · (G(0)
f W) = 0 in Ω0

f , (144)

W = 0 on Γ0
I ∪ Γ0

II, (145)

This cell problem is to be supplemented by periodic conditions on the boundary
∂Ω0

f \(Γ
0
I ∪ Γ0

II), and for the uniqueness of the solution, a further condition on the auxiliary
variable P is required, i.e., 〈P〉f = 0. Since the quantity w retains a dependence on the
pore-scale, we take the integral average of (141) over the fluid domain, which leads to:

〈w〉f = −〈W〉f∇X̄ p(0) (146)

Therefore, the macroscale fluid flow is described by Darcy’s law.
We also consider the incompressibility constraint (109), and we integrate over the fluid

domain to obtain:∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Ω0

f

∇Ȳ · (G(1)
f V(0) + G

(0)
f V(1))dȲ = 0. (147)

Applying the divergence theorem to the second integral and using (94), (95), (110)
and (111) give: ∫

Ω0
f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0

I

(G
(1)
f u̇(0) + G

(0)
f u̇(1)

I )n0
I dS

+
∫

Γ0
II

(G
(1)
f u̇(0) + G

(0)
f u̇(1)

II )n0
IIdS = 0. (148)

We are able to rewrite this as:∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0

I

(u̇(0)(G
(1)
f )T + u̇(1)

I (G
(0)
f )T)n0

I dS +
∫

Γ0
II

(u̇(0)(G
(1)
f )T

+ u̇(1)
II (G

(0)
f )T)n0

IIdS = 0, (149)

and accounting for the continuity of the transpose of the Piola transformations applied to
the normal (130) and (131) gives:∫

Ω0
f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0

I

(u̇(0)(G
(1)
I )T + u̇(1)

I (G
(0)
I )T)n0

I dS

+
∫

Γ0
II

(u̇(0)(G
(1)
II )T + u̇(1)

II (G
(0)
II )T)n0

IIdS = 0. (150)
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This can be rewritten as:∫
Ω0

f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0

I

(G
(1)
I u̇(0) + G

(0)
I u̇(1)

I )n0
I dS

+
∫

Γ0
II

(G
(1)
II u̇(0) + G

(0)
II u̇(1)

II )n0
IIdS = 0, (151)

where we use the notation that (̇) = ∂()/∂t. We wish to apply the divergence theorem
again; however, to do this, we must include the terms on the interface ΓIII, that is:∫

Ω0
f

∇X̄ · (G(0)
f V(0))dȲ +

∫
Γ0

I

(G
(1)
I u̇(0) + G

(0)
I u̇(1)

I )n0
I dS

+
∫

Γ0
II

(G
(1)
II u̇(0) + G

(0)
II u̇(1)

II )n0
IIdS +

∫
Γ0

III

(u̇(0)(G
(1)
I )T + u̇(1)

I (G
(0)
I )T)n0

IIIdS

−
∫

Γ0
III

(u̇(0)(G
(1)
II )T + u̇(1)

II (G
(0)
II )T)n0

IIIdS = 0, (152)

where we can add these terms on ΓIII because they are effectively zero because of the
continuity of the transpose of the Piola transform (130) and (131). Applying the divergence
theorem again gives:

∇X̄ · 〈G(0)
f V(0)〉f −

∫
Ω0

I

∇Ȳ · (G(1)
I u̇(0) + G

(0)
I u̇(1)

I )dȲ

−
∫

Ω0
II

∇Ȳ · (G(1)
II u̇(0) + G

(0)
II u̇(1)

II )dȲ = 0. (153)

Therefore, we can write this as:

∇X̄ · 〈G(0)
f V(0)〉f = 〈∇Ȳ · (G(1)

I u̇(0) + G
(0)
I u̇(1)

I )〉I + 〈∇Ȳ · (G(1)
II u̇(0) + G

(0)
II u̇(1)

II )〉II. (154)

Since we have that w = V(0) − u̇(0) from (136), then this can be rearranged, and
multiplying by G

(0)
f gives G(0)

f V(0) = G
(0)
f w + G

(0)
f u̇(0). We then take the integral average

over the fluid domain, which gives 〈G(0)
f V(0)〉f = 〈G

(0)
f w〉f + 〈G

(0)
f 〉fu̇

(0), and this can be
used to replace the LHS of (154). Therefore, we have:

∇X̄ ·
(
〈G(0)

f w〉f + 〈G
(0)
f 〉fu̇

(0)
)
= 〈∇Ȳ · (G(1)

I u̇(0) + G
(0)
I u̇(1)

I )〉I

+ 〈∇Ȳ · (G(1)
II u̇(0) + G

(0)
II u̇(1)

II )〉II. (155)

Then, we wish to expand the two terms on the RHS of (155), which gives:

∇Ȳ · (G(1)
I u̇(0) + G

(0)
I u̇(1)

I ) +∇Ȳ · (G(1)
II u̇(0) + G

(0)
II u̇(1)

II )

= Tr∇Ȳ(G
(1)
I u̇(0) + G

(0)
I u̇(1)

I ) + Tr∇Ȳ(G
(1)
II u̇(0) + G

(0)
II u̇(1)

II )

= (∇Ȳ · (G(1)
I )T) · u̇(0) + (∇Ȳ · (G(1)

II )T) · u̇(0) + G
(0)
I : ∇Ȳu̇(1)

I

+ G
(0)
II : ∇Ȳu̇(1)

II + (∇Ȳ · (G(0)
I )T) · u̇(1)

I + (∇Ȳ · (G(0)
II )T) · u̇(1)

II

+ G
(1)
I : ∇Ȳu̇(0) + G

(0)
II : ∇Ȳu̇(0). (156)
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We can cancel the terms in (156) due to u(0) = u(0)(X̄, t) and using (127) and then
rewrite (155) using (156) as:

∇X̄ ·
(
〈G(0)

f w〉f + 〈G
(0)
f 〉fu̇

(0)
)
= −

(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II

)
· u̇(0)

+ 〈G(0)
I : ∇Ȳu̇(1)

I 〉I + 〈G
(0)
II : ∇Ȳu̇(1)

II 〉II, (157)

where we also use (128) to replace the first two terms in (156). We return to this expression
in Section 4.

3.5. The Macroscale Poroelastic Relationships

We require the macroscale constitutive relationship. To begin, we sum up the integral
averages of Equations (106)–(108), that is,∫

Ω0
I

∇Ȳ · σ(1)
I dȲ +

∫
Ω0

II

∇Ȳ · σ(1)
II dȲ +

∫
Ω0

f

∇Ȳ · (σf
(1)(G

(0)
f )T)dȲ

+
∫

Ω0
f

∇Ȳ · (σf
(0)(G

(1)
f )T)dȲ +

∫
Ω0

I

∇X̄ · σ(0)
I dȲ +

∫
Ω0

II

∇X̄ · σ(0)
II dȲ

+
∫

Ω0
f

∇X̄ · (σf
(0)(G

(0)
f )T)dȲ = 0. (158)

We apply the divergence theorem to the first four integrals and then rearrange the last
three integrals due to the assumption of macroscopic uniformity (72) to obtain:

∫
∂Ω0

I \(Γ
0
I∪Γ0

III)
σ
(1)
I n0

Ω0
I \(Γ

0
I∪Γ0

III)
dS +

∫
Γ0

I

σ
(1)
I n0

I dS−
∫

Γ0
III

σ
(1)
I n0

IIIdS +∫
∂Ω0

II\(Γ
0
II∪Γ0

III)
σ
(1)
II n0

Ω0
II\(Γ

0
II∪Γ0

III)
dS +

∫
Γ0

II

σ
(1)
II n0

IIdS +
∫

Γ0
III

σ
(1)
II n0

IIIdS +∫
∂Ω0

f \(Γ
0
I∪Γ0

II)
σ
(1)
f (G

(0)
f )Tn0

Ω0
f \(Γ

0
I∪Γ0

II)
dS−

∫
Γ0

II

σ
(1)
f (G

(0)
f )Tn0

IIdS−
∫

Γ0
I

σ
(1)
f (G

(0)
f )Tn0

I dS +∫
∂Ω0

f \(Γ
0
I∪Γ0

II)
σ
(0)
f (G

(1)
f )Tn0

Ω0
f \(Γ

0
I∪Γ0

II)
dS−

∫
Γ0

II

σ
(0)
f (G

(1)
f )Tn0

IIdS−
∫

Γ0
I

σ
(0)
f (G

(1)
f )Tn0

I dS +

∇X̄ ·
∫

Ω0
I

σ
(0)
I dȲ +∇X̄ ·

∫
Ω0

II

σ
(0)
II dȲ +∇X̄ ·

∫
Ω0

f

σf
(0)(G

(0)
f )TdȲ = 0, (159)

where n0
I , n0

II, n0
III, n0

Ω0
I \(Γ

0
I∪Γ0

III)
, n0

Ω0
II\(Γ

0
II∪Γ0

III)
and n0

Ω0
f \(Γ

0
I∪Γ0

II)
are the unit normals corre-

sponding to the interfaces Γ0
I , Γ0

II, Γ0
III, ∂Ω0

I \ (Γ0
I ∪ Γ0

III), ∂Ω0
II \ (Γ0

II ∪ Γ0
III) and ∂Ω0

f \ (Γ
0
I ∪

Γ0
II). The contributions over the external boundaries of Ω0

I , Ω0
II and Ω0

f cancel due to
Ȳ-periodicity, so (159) becomes:

∫
Γ0

I

σ
(1)
I n0

I dS−
∫

Γ0
I

σ
(1)
f (G

(0)
f )Tn0

I dS−
∫

Γ0
I

σ
(0)
f (G

(1)
f )Tn0

I dS +
∫

Γ0
II

σ
(1)
II n0

IIdS −∫
Γ0

II

σ
(1)
f (G

(0)
f )Tn0

IIdS−
∫

Γ0
II

σ
(0)
f (G

(1)
f )Tn0

IIdS−
∫

Γ0
III

σ
(1)
I n0

IIIdS +
∫

Γ0
III

σ
(1)
II n0

IIIdS +

∇X̄ ·
∫

Ω0
I

σ
(0)
I dȲ +∇X̄ ·

∫
Ω0

II

σ
(0)
II dȲ +∇X̄ ·

∫
Ω0

f

σf
(0)(G

(0)
f )TdȲ = 0. (160)

The first eight integrals cancel using the continuity of stresses (112)–(114), so we obtain:

∇X̄ · 〈σ(0)
I 〉I +∇X̄ · 〈σ(0)

II 〉II −∇X̄ ·
(

p(0)〈(G(0)
f )T〉f

)
= 0, (161)
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where we use (100). Then, we have that:

∇X̄ · σEff = 0, (162)

where:
σEff = 〈σ

(0)
I 〉I + 〈σ

(0)
II 〉II − p(0)〈(G(0)

f )T〉f. (163)

We can describe (162) and (163) as the average stress balance and constitutive law for
our nonlinear poroelastic composite material.

We can write the following problem for u(1)
I and u(1)

II using (90), (91), (96)–(98), (100)
and (115):

∇Ȳ · σ(0)
I = 0 in Ω0

I , (164)

∇Ȳ · σ(0)
II = 0 in Ω0

II, (165)

u(1)
I = u(1)

II on Γ0
III, (166)

σ
(0)
I n0

III = σ
(0)
II n0

III on Γ0
III, (167)

σ
(0)
I n0

I = −(p(0)(G(0)
f )T)n0

I on Γ0
I , (168)

σ
(0)
II n0

II = −(p(0)(G(0)
f )T)n0

II on Γ0
II. (169)

Since our solid stress tensors σI and σII are described by a constitutive law, our
problem here is the general case. It is possible to state a generalised ansatz to this problem
and state the cell problems. However, we wait to do this until the constitutive law has been
specified. Within the next section, we state the macroscale model for this general case and
then specify this problem for a specific choice of the constitutive law.

4. The Macroscale Model and Particular Cases

We begin by stating the general nonlinear macroscale model for poroelastic composite
materials undergoing large deformations where the specific constitutive law for the material
has not yet been specified, that is,

〈w〉f = −〈W〉f∇X̄ p(0),

∇X̄ · σEff = 0,

σEff =

〈
∂ψ

(0)
I

∂F(0)
I

〉
I

+

〈
∂ψ

(0)
II

∂F(0)
II

〉
II

− p(0)〈(G(0)
f )T〉f,

∇X̄ · 〈G(0)
f w〉f = −

(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II + 〈∇X̄ · (G(0)

f )T〉f
)
· u̇(0)

+ 〈G(0)
I : ∇Ȳu̇(1)

I 〉I + 〈G
(0)
II : ∇Ȳu̇(1)

II 〉II − 〈G
(0)
f 〉f : ∇X̄u̇(0),

where ψI and ψII are the strain energy functions for the material in the subphase and
matrix, respectively. This model comprises Darcy’s law for the relative fluid–solid velocity.
The second and third equations are the stress balance and the constitutive law for the
nonlinear poroelastic composite material. The constitutive law is to be specified further
by choosing a specific strain energy function for the matrix and the subphase, relevant to
the intended application. The final equation is the conservation of mass equation. This
equation is also be influenced by the choice of strain energy function for the matrix and
the subphase. Within the next subsection, we prescribe a particular constitutive law for
the elastic materials, and this leads to a specified model that reduces to three previously
known models under appropriate simplifying assumptions.
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4.1. Constitutive Law

We choose a very simple constitutive law for our solid material, which is the de
Saint-Venant strain energy function given by:

ψv =
1
2

Ev : Cv : Ev in Ω0
v where v = I, II, (170)

where ψv is described by different parameters depending on the solid domain that it is
describing and Ev is the Green-Lagrangian strain tensor for each solid domain, that is,

ψv =


ψI =

1
2

EI : CI : EI in Ω0
I ,

ψII =
1
2

EII : CII : EII in Ω0
II.

(171)

We adopt the notation that:

C =

{
CI in Ω0

I

CII in Ω0
II

(172)

and the subscript v = I, II, where I is the subphase and II is the matrix throughout this
section. We have that the expansion of ψv is given by:

ψε
v =

1
2

Eε
v : C : Eε

v, (173)

and we note that C is the fourth rank elasticity tensor with major and minor symme-
tries, namely:

Cijkl = Cjikl = Cijlk = Cklij. (174)

We can now determine Ev. We have:

Ev =
1
2
((Fv)

TFv − I) =
1
2
((∇Xuv + I)T(∇Xuv + I)− I)

=
1
2
((∇Xuv)

T∇Xuv + (∇Xuv)
T +∇Xuv), (175)

where the subscript v = I, II denotes the subphase and the matrix. We now apply the
asymptotic homogenization technique to (175). Using the transformation of the gradient
operator (70):

∇X → ∇X̄ +
1
ε
∇Ȳ, (176)

we can write Eε
v as:

Eε
v =

1
2

[
(∇X̄uε

v +
1
ε
∇Ȳuε

v)
T(∇X̄uε

v +
1
ε
∇Ȳuε

v) + (∇X̄uε
v +

1
ε
∇Ȳuε

v)
T + (∇X̄uε

v +
1
ε
∇Ȳuε

v)

]
=

1
2

[
(∇X̄uε

v)
T∇X̄uε

v +
1
ε
(∇X̄uε

v)
T∇Ȳuε

v +
1
ε
(∇Ȳuε

v)
T∇X̄uε

v +
1
ε2 (∇Ȳuε

v)
T(∇Ȳuε

v)

+∇X̄uε
v +

1
ε
∇Ȳuε

v + (∇X̄uε
v)

T +
1
ε
(∇Ȳuε

v)
T
]

. (177)
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Then, using (177), we are able to write the expansion of the strain energy function
ψε

v as:

ψε
v =

1
8

[(
(∇X̄uε

v)
T∇X̄uε

v +
1
ε
(∇X̄uε

v)
T∇Ȳuε

v +
1
ε
(∇Ȳuε

v)
T∇X̄uε

v +
1
ε2 (∇Ȳuε

v)
T(∇Ȳuε

v)

+∇X̄uε
v +

1
ε
∇Ȳuε

v + (∇X̄uε
v)

T +
1
ε
(∇Ȳuε

v)
T
)

: C :
(
(∇X̄uε

v)
T∇X̄uε

v

+
1
ε
(∇X̄uε

v)
T∇Ȳuε

v +
1
ε
(∇Ȳuε

v)
T∇X̄uε

v +
1
ε2 (∇Ȳuε

v)
T(∇Ȳuε

v)

+∇X̄uε
v +

1
ε
∇Ȳuε

v + (∇X̄uε
v)

T +
1
ε
(∇Ȳuε

v)
T
)]

. (178)

Multiplying (178) by ε2, we obtain:

ε2ψε
v =

1
8

[(
ε2(∇X̄uε

v)
T∇X̄uε

v + ε(∇X̄uε
v)

T∇Ȳuε
v + ε(∇Ȳuε

v)
T∇X̄uε

v + (∇Ȳuε
v)

T∇Ȳuε
v

+ ε2∇X̄uε
v + ε∇Ȳuε

v + ε2(∇X̄uε
v)

T + ε(∇Ȳuε
v)

T
)

: ε2C :
(

ε2(∇X̄uε
v)

T∇X̄uε
v

+ ε(∇X̄uε
v)

T∇Ȳuε
v + ε(∇Ȳuε

v)
T∇X̄uε

v + (∇Ȳuε
v)

T∇Ȳuε
v + ε2∇X̄uε

v

+ ε∇Ȳuε
v + ε2(∇X̄uε

v)
T + ε(∇Ȳuε

v)
T
)]

. (179)

We can then equate the coefficients of ε0, ε1 and ε2 in (179). For ε0, we have:

0 =
1
8

[(
(∇Ȳu(0))T∇Ȳu(0)

)
:
(
(∇Ȳu(0))T∇Ȳu(0)

)]
= 0. (180)

Equating the coefficients of ε1 gives:

0 =
1
8

[(
(∇X̄u(0))T∇Ȳu(0) + (∇Ȳu(0))T∇X̄u(0) + (∇Ȳu(1)

v )T∇Ȳu(0) + (∇Ȳu(0))T∇Ȳu(1)
v

+∇Ȳu(0) + (∇Ȳu(0))T
)

:
(
(∇X̄u(0))T∇Ȳu(0) + (∇Ȳu(0))T∇X̄u(0) + (∇Ȳu(1)

v )T∇Ȳu(0)

+ (∇Ȳu(0))T∇Ȳu(1)
v +∇Ȳu(0) + (∇Ȳu(0))T

)]
= 0, (181)

and finally, equating the coefficients of ε2 gives:

ψ
(0)
v =

1
8

[(
(∇X̄u(0))T∇X̄u(0) + (∇X̄u(0))T∇Ȳu(1)

v + (∇Ȳu(1)
v )T∇X̄u(0) + (∇Ȳu(1)

v )T∇Ȳu(1)
v

+∇X̄u(0) +∇Ȳu(1)
v + (∇X̄u(0))T + (∇Ȳu(1)

v )T
)

: C :
(
(∇X̄u(0))T∇X̄u(0)

+ (∇X̄u(0))T∇Ȳu(1)
v + (∇Ȳu(1)

v )T∇X̄u(0) + (∇Ȳu(1)
v )T∇Ȳu(1)

v +∇X̄u(0) +∇Ȳu(1)
v

+ (∇X̄u(0))T + (∇Ȳu(1)
v )T

)]
=

1
2

E(0)
v : C : E(0)

v , (182)

where we have that:

E(0)
v = (∇X̄u(0))T∇X̄u(0) + (∇X̄u(0))T∇Ȳu(1)

v + (∇Ȳu(1)
v )T∇X̄u(0)

+ (∇Ȳu(1)
v )T∇Ȳu(1)

v +∇X̄u(0) +∇Ȳu(1)
v + (∇X̄u(0))T + (∇Ȳu(1)

v )T. (183)
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Therefore, we have that the leading order term of the constitutive law in the subphase
and the matrix respectively are:

ψ
(0)
I =

1
2

E(0)
I : CI : E(0)

I and ψ
(0)
II =

1
2

E(0)
II : CII : E(0)

II . (184)

Now that we have an expression for ψ
(0)
v , we can use this to find the leading order

term of the second Piola–Kirchoff stress, that is we take the derivatives of (184) with respect
to E(0)

I and E(0)
II , respectively. Therefore, we have:

S(0)
v =

∂ψ
(0)
v

∂E(0)
v

= C : E(0)
v , (185)

where we have a different second Piola–Kirchoff stress for both the subphase and the
matrix, respectively, that is,

S(0)
v =

{
S(0)

I = CI : E(0)
I in Ω0

I ,

S(0)
II = CII : E(0)

II in Ω0
II.

(186)

We now wish to linearise the second Piola–Kirchoff stress S(0)
v . To do this, we can use

the expression F(0)
v = I + H where:

H =

{
HI = ∇X̄u(0) +∇Ȳu(1)

I in Ω0
I ,

HII = ∇X̄u(0) +∇Ȳu(1)
II in Ω0

II.
(187)

Therefore, carrying out the linearisation, we have that:

S(0)
v =C : E(0)

v

=C :
(

1
2
((F(0)

v )TF(0)
v − I)

)
=C :

(
1
2
((I + H)T(I + H)− I)

)
(188)

=C :
(

1
2
(H + HT + HTH)

)
. (189)

Ignoring the nonlinear terms, we have:

(S(0)
v )lin = C :

(
1
2
(H + HT)

)
= C : SymH. (190)

We are now able to use the second Piola–Kirchoff stress S(0)
v to find the first Piola–

Kirchoff stress:

σ
(0)
v = F(0)

v S(0)
v

= (I + H)C : E(0)
v , (191)

where we can define the first Piola stress σ(0) in both of the solid constituents, the subphase
and matrix, as:

σ
(0)
v =

{
σ
(0)
I = (I + HI)CI : E(0)

I in Ω0
I ,

σ
(0)
II = (I + HII)CII : E(0)

II in Ω0
II.

(192)
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We can also linearise the first Piola–Kirchoff stress σ(0). Therefore, we have:

(σv)
(0)
lin = C : SymH, (193)

and since we have that C is major and minor symmetric, then we can write this as:

(σv)
(0)
lin = C : H. (194)

We therefore can define the solid stresses in the subphase and matrix as:

(σ
(0)
I )lin = CI : (∇X̄u(0) +∇Ȳu(1)

I ) in Ω0
I , (195)

(σ
(0)
II )lin = CII : (∇X̄u(0) +∇Ȳu(1)

II ) in Ω0
II, (196)

respectively, for our chosen constitutive law. We can then use these expressions in the
problem for u(1)

I and u(1)
II given by Equations (164)–(169), that is,

∇Ȳ · (CI∇Ȳ(u
(1)
I )) +∇Ȳ · (CI∇X̄(u(0))) = 0 in Ω0

I , (197)

∇Ȳ · (CII∇Ȳ(u
(1)
II )) +∇Ȳ · (CII∇X̄(u(0))) = 0 in Ω0

II, (198)

u(1)
I = u(1)

II on Γ0
III, (199)

CI∇Ȳ(u
(1)
I )n0

III −CII∇Ȳ(u
(1)
II )n0

III = (CII −CI)∇X̄(u(0))n0
III on Γ0

III, (200)

(CI∇Ȳ(u
(1)
I ) +CI∇X̄(u(0)))n0

I = −(p(0)(G(0)
f )T)n0

I on Γ0
I , (201)

(CII∇Ȳ(u
(1)
II ) +CII∇X̄(u(0)))n0

II = −(p(0)(G(0)
f )T)n0

II on Γ0
II. (202)

The problem given by (197)–(202) admits a unique solution up to a Ȳ-constant function.
Exploiting linearity, the solution is given as:

u(1)
I = AI∇X̄(u(0)) + aI p(0) + c1(X̄), (203)

u(1)
II = AII∇X̄(u(0)) + aII p(0)c2(X̄), (204)

where c1(X̄) and c2(X̄) are Ȳ-constant functions. The third rank tensors AI and AII are the
solutions of the pore-scale problems given by:

∇Ȳ · (CI∇Ȳ(AI)) +∇Ȳ ·CI = 0 in Ω0
I , (205)

∇Ȳ · (CII∇Ȳ(AII)) +∇Ȳ ·CII = 0 in Ω0
II, (206)

AI = AII on Γ0
III, (207)

CI∇Ȳ(AI)n0
III −CII∇Ȳ(AII)n0

III = (CII −CI)n0
III on Γ0

III, (208)

(CI∇Ȳ(AI))n0
I +CIn0

I = 0 on Γ0
I (209)

(CII∇Ȳ(AII))n0
II +CIIn0

II = 0 on Γ0
II, (210)

and the vectors aI and aII are the solution to this pore-scale problem:

∇Ȳ · (CI∇Ȳ(aI)) = 0 in Ω0
I , (211)

∇Ȳ · (CII∇Ȳ(aII)) = 0 in Ω0
II, (212)

aI = aII on Γ0
III, (213)

(CI∇Ȳ(aI))n0
III = (CII∇Ȳ(aII))n0

III on Γ0
III, (214)

(CI∇Ȳ(aI) + (G
(0)
f )T)n0

I = 0 on Γ0
I , (215)

(CII∇Ȳ(aII) + (G
(0)
f )T)n0

II = 0 on Γ0
II. (216)
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Both (205)–(210) and (211)–(216) are to be solved on the periodic cell. To ensure
the uniqueness of the solution, we also require a further condition on AI, AII, aI and aII,
for example:

〈AI〉I + 〈AII〉II = 0 and 〈aI〉I + 〈aII〉II = 0. (217)

Here, we wish to discuss in detail the cell problems (143)–(145), (205)–(210) and
(211)–(216) and how they can potentially be solved. These pore-scale periodic cell problems
are to be solved to determine the model coefficients of the final macroscale model. It is
through these model coefficients that the complexity of the materials microstructure is
encoded in the final model.

In general, with the asymptotic homogenization technique, these cell problems would
only depend on the pore-scale and therefore can be solved in a straight-forward way.
For example, solving the pore-scale asymptotic homogenization cell problems for linear
elastic composites was carried out in [44], and for linear poroelasticity, the problems were
solved in [40]. Similarly, it would be possible to solve the cell problems arising from linear
poroelastic composites by combining the techniques used in both of these previous works.
In the linear case, we have the problems (143)–(145), (205)–(210) and (211)–(216) with the
simplification that (G(0)

f )T approaches the identity. This simplification means that the two
scales are fully decoupled, and we can solve the fluid and the elastic-type cell problems.

However, due to the nonlinearity of the system we consider here, the two scales are
coupled, meaning that the pore-scale periodic cell problems have a dependence on the
macroscale and therefore cannot be easily solved. This dependence is through the quantity
(G

(0)
f )T appearing in (143)–(145) and (215)–(216). This quantity is the Piola transform,

which involves the leading order deformation gradient F(0). This depends on both the
pore-scale and the macroscale, as can be seen in Equations (120) and (121). This means
that the two scales are not fully decoupled, and therefore, this dramatically increases the
computational complexity.

It is however crucial for a realistic analysis of the scenarios of interest (such as bio-
logical tissues) to be able to solve problems of this type. Despite the complexity, there
are some potential emerging techniques that may mean it would be possible to solve this
model numerically in the future. A recent example of a proposed method that could be
potentially used to solve the types of problems arising in this work is found in [45]. This
work investigated the potential of using Artificial Neural Networks (ANNs) for quick,
accurate upscaling and localisation of problems. The method involves an incremental
numerical approach where there is a rearrangement of the cell properties relating to the cur-
rent deformation, and this means that there is a remodelling of the macroscopic model after
each incremental time step. This method is applicable to finite strain and large deformation
problems, whilst there will only be infinitesimal deformation within each incremental time
step. Reference [45] investigated the full effects of the coupling between the macroscale
and microscale for the first time in the analysis of fluid-saturated porous media. We believe
that by following an approach similar to the one set out in [45], we could obtain a solution
to our model numerically.

We can use our expressions (203) and (204) for u(1)
I and u(1)

II to rewrite (σ
(0)
I )lin and

(σ
(0)
II )lin. We have:

(σ
(0)
I )lin =CI∇Ȳ(AI∇X̄u(0) + aI p(0)) +CI∇X̄u(0)

=CI∇Ȳ AI∇X̄u(0) +CI∇ȲaI p(0) +CI∇X̄u(0)

=CIMI∇X̄u(0) +CI∇X̄u(0) +CIQI p(0)

=(CIMI +CI)∇X̄u(0) +CIQI p(0), (218)
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and:

(σ
(0)
II )lin =CII∇Ȳ(AII∇X̄u(0) + aII p(0)) +CII∇X̄u(0)

=CII∇Ȳ AII∇X̄u(0) +CII∇ȲaII p(0) +CII∇X̄u(0)

=CIIMII∇X̄u(0) +CII∇X̄u(0) +CIIQII p(0)

=(CIIMII +CII)∇X̄u(0) +CIIQII p(0), (219)

where we define the pore-scale gradients of the auxiliary variables as:

MI = ∇Ȳ AI, MII = ∇Ȳ AII, QI = ∇ȲaI, QII = ∇ȲaII. (220)

Then, we can return to (163) and use our linearised solid stresses to find the effec-
tive stress:

σEff =〈(σ
(0)
I )lin〉I + 〈(σ

(0)
II )lin〉II − p(0)〈(G(0)

f )T〉f
=
(
〈CIMI +CI〉I + 〈CIIMII +CII〉II

)
∇X̄u(0) +

(
〈CIQI〉I + 〈CIIQII〉II

− 〈(G(0)
f )T〉f

)
p(0). (221)

As mentioned in Section 3.4, we return to the expression (157), restated here for
convenience,

∇X̄ ·
(
〈G(0)

f w〉f + 〈G
(0)
f 〉fu̇

(0)
)
= −

(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II

)
· u̇(0)

+ 〈G(0)
I : ∇Ȳu̇(1)

I 〉I + 〈G
(0)
II : ∇Ȳu̇(1)

II 〉II (222)

We obtain expressions for u̇(1)
I and u̇(1)

II by taking the time derivative of (203) and
(204), and we then substitute these expressions into (222) to obtain:

∇X̄ ·
(
〈G(0)

f w〉f + 〈G
(0)
f 〉fu̇

(0)) = 〈G(0)
I : ∇Ȳ AI〉I : ∇X̄u̇(0) + 〈G(0)

I : ∇ȲaI〉I ṗ(0)

+ 〈G(0)
II : ∇Ȳ AII〉II : ∇X̄u̇(0) + 〈G(0)

II : ∇ȲaII〉II ṗ(0)

−
(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II

)
· u̇(0). (223)

Expanding the LHS in (223) and using (220), we obtain:

∇X̄ · 〈G(0)
f w〉f +∇X̄ ·

(
〈G(0)

f 〉fu̇
(0)) =〈G(0)

I : MI〉I : ∇X̄u̇(0) + 〈G(0)
I : QI〉I ṗ(0)

+ 〈G(0)
II : MII〉II : ∇X̄u̇(0) + 〈G(0)

II : QII〉II ṗ(0)

−
(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II

)
· u̇(0). (224)

Expanding the second term on the LHS further and rearranging, we obtain:

∇X̄ · 〈G(0)
f w〉f + 〈G

(0)
f 〉f : ∇X̄u̇(0) =〈G(0)

I : MI〉I : ∇X̄u̇(0) + 〈G(0)
I : QI〉I ṗ(0)

+〈G(0)
II : MII〉II : ∇X̄u̇(0) + 〈G(0)

II : QII〉II ṗ(0) −
(
〈∇X̄ · (G(0)

I )T〉I
+〈∇X̄ · (G(0)

II )T〉II + 〈∇X̄ · (G(0)
f )T〉f

)
· u̇(0). (225)
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Rearranging and collecting ṗ(0) terms gives:

ṗ(0) =
1

〈G(0)
I : QI〉I + 〈G(0)

II : QII〉II

[
∇X̄ · 〈G(0)

f w〉f +
(
〈G(0)

f 〉f − 〈G
(0)
I : MI〉I

− 〈G(0)
II : MII〉II

)
: ∇X̄u̇(0) +

(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II

+ 〈∇X̄ · (G(0)
f )T〉f

)
· u̇(0)

]
. (226)

We define:
M :=

−1

〈G(0)
I : QI〉I + 〈G(0)

II : QII〉II
, (227)

and:
α̃ := 〈G(0)

f 〉f − 〈G
(0)
I : MI〉I − 〈G(0)

II : MII〉II, (228)

and we can then use (227) and (228) to rewrite (226) as:

ṗ(0) =−M
[
∇X̄ · 〈G(0)

f w〉f + α̃ : ∇X̄u̇(0) +
(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II

+ 〈∇X̄ · (G(0)
f )T〉f

)
· u̇(0)]. (229)

Finally, we can divide by M to obtain:

ṗ(0)

M
=−∇X̄ · 〈G(0)

f w〉f − α̃ : ∇X̄u̇(0) −
(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II

+ 〈∇X̄ · (G(0)
f )T〉f

)
· u̇(0). (230)

We therefore have now derived the effective macroscale governing equations for a
nonlinear poroelastic composite that has the constitutive law given by the de Saint-Venant
strain energy function. We state our novel macroscale model and then consider limit cases
for the model where we obtain previously known results from the literature. The equations
in the macroscale model represent a poroelastic-type system of PDEs. Therefore, the
macroscale model is given by:

〈w〉f = −〈W〉f∇X̄ p(0), (231)

∇X̄ · σEff = 0, (232)

σEff =
(
〈CIMI +CI〉I + 〈CIIMII +CII〉II

)
: ∇X̄u(0) +

(
〈CIQI〉I + 〈CIIQII〉II

− 〈(G(0)
f )T〉f

)
p(0), (233)

ṗ(0) =
1

〈G(0)
I : QI〉I + 〈G(0)

II : QII〉II

[
∇X̄ · 〈G(0)

f w〉f +
(
〈G(0)

f 〉f − 〈G
(0)
I : MI〉I

− 〈G(0)
II : MII〉II

)
: ∇X̄u̇(0) +

(
〈∇X̄ · (G(0)

I )T〉I + 〈∇X̄ · (G(0)
II )T〉II

+ 〈∇X̄ · (G(0)
f )T〉f

)
· u̇(0)

]
, (234)

where the macroscale pressure is denoted by p(0), u(0) is the leading order elastic dis-
placement, the solid velocity is represented by u̇(0) and, finally, w is the leading order
relative fluid–solid velocity. Equation (231) in the macroscale model is Darcy’s law for w.
Equation (232) of the macroscale model is the stress balance equation with the effective
stress tensor σEff. The constitutive equation given by (233) is of poroelastic type; however,
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it contains a nonlinear coordinate transformation. The effective elasticity tensor for the
material is given by:

C̃ = 〈CIMI +CI〉I + 〈CIIMII +CII〉II (235)

Finally, (234) is the conservation of mass for a nonlinear poroelastic composite material.
The three terms in our expression for ṗ(0) that are the divergence of the Piola transforms in
the subphase, matrix and fluid, respectively, describe the volume changes related to the
deformation and can be viewed as a correction term that maintains the conservation of mass
despite the nonlinear coordinate transformations. We can say that the effective mechanical
behaviour of our nonlinear poroelastic composite material can be fully described by the
model coefficients, that is the effective elasticity tensor C̃, the hydraulic conductivity tensor
〈W〉f, the transformed Biot’s tensor of coefficients, α̃ and the transformed Biot’s modulus,
M. We note that although, structurally, this model is similar to that of linear poroelasticity,
the key novelty resides in the model coefficients that capture the nonlinear deformations
and the additional terms. These model coefficients are to be obtained by solving the novel
cell problems (143)–(145), (205)–(210) and (211)–(216)

Next, we consider particular cases for our model and are able to derive previously
known models that were developed using the asymptotic homogenization technique.

4.2. Comparison with Linear Poroelastic Composites

We begin with the case where the poroelastic composite solids that we are considering
are linearly elastic. This setting is applicable to many situations including the interstitial
matrix of biological tissues and when describing hard hierarchical materials such as bones
and tendons where deformations are very small. We note that to reduce to the linear elastic
case, we have that G(0) → I. We also introduce the notation:

〈ϕI〉I + 〈ϕII〉II = 〈ϕI + ϕII〉s, (236)

for fields ϕ with components ϕI and ϕII defined in the solid cell portions Ω0
I or Ω0

II, respec-
tively. This means that the model (231)–(234) reduces to:

〈w〉f = −〈W〉f∇X̄ p(0),

∇X̄ · σEff = 0,

σEff = 〈CIMI +CI +CIIMII +CII〉s∇X̄u(0) + (〈CIQI +CIIQII〉s − φI)p(0),

ṗ(0) =
1

〈Tr(QI + QII)〉s

(
∇X̄ · 〈w〉f + (φI− 〈Tr(MI +MII)〉s) : ∇X̄u̇(0)

)
,

(237)

This is identically the model for linear poroelastic composites presented in [27]. We
note that the integral average over the fluid domain of the identity tensor, 〈I〉f, is φI. We
also have that 〈G(0)

β : Qβ〉β, where β = I, II becomes 〈TrQβ〉β in the limit G(0) → I. Similarly,

〈G(0)
β : Mβ〉β : ∇X̄u̇(0) becomes 〈TrMβ〉β : ∇X̄u̇(0). As a result of taking the limit G(0) → I,

we also have that F(0) → I, and using this in the cell problems (143)–(145), (205)–(210) and
(211)–(216), we recover the same cell problems as in [27] and therefore obtain exactly the
same model coefficients under this limit.

We also note, as remarked in [27], that if we consider only one elastic phase, then
the model reduces to the macroscale model for a standard poroelastic material (see the no
growth limit in [39], as well as [22,25]). Furthermore, in the limit of zero fluid (no pores),
then this macroscale model reduces to the model for an elastic composite [46].

4.3. Comparison with Nonlinear Poroelasticity

We now wish to recover previous work on nonlinear poroelasticity. For this, we
assume that our material has only one hyperelastic phase, the matrix that we denote by
Ωs, with fluid flowing in the pores. We wish to compare our Equation (225) under the
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assumption of only one elastic phase with the generalised Biot fluid equation found in [31].
We can rewrite our equation with only one elastic phase as:

−∇X̄ · 〈G(0)
f W〉f∇X̄ p(0) = 〈G(0)

s : Ms〉s : ∇X̄u̇(0) + 〈G(0)
s : Qs〉s ṗ(0) − 〈∇X̄ · (G(0)

s )T〉s · u̇(0)

−∇X̄ · (〈G(0)
f 〉fu̇

(0)). (238)

We note that we do not consider any body forces, so the f appearing in [31] equals
zero here. A general ansatz for u(1) was also used in [31], but we are still able to make some
identifications between the terms in our Equation (238) and the terms in their generalised
Biot fluid equation. We note that the model coefficients of [31] all involve (G(0))T, so we
should point out that due to a different choice in the definition of the Piola transformation
between this work and [31], we have that (G(0))T in [31] equals G(0) in this work. We
also use a modified (16) where G(0) = G

(0)
s in Ω0

s and G(0) = G
(0)
f in Ω0

f , and we have the

continuity of G(0)
s and G

(0)
f on the interface between the phases. This means that we can

identify the coefficients:

K∗ = −〈G(0)W〉f, A∗ = 〈∇Ȳ(G
(0)
s A)〉s = 〈G(0)

s : Ms〉s,

B∗ = 〈∇Ȳ(G
(0)a)〉s = 〈G(0)

s : Qs〉s, D∗ = 〈G(0)〉Ω.
(239)

The difference in sign between K∗ and W is due to the difference in the choice of
ansatz for the fluid problem. We therefore can recover the generalised Biot fluid equation
from our Equation (238).

We now wish to compare the macroscale elasticity equation in [31] with our macroscale
balance equation and constitutive law (232) and (233). We first should note that in our
work, we are not considering any body forces, and therefore, we can assume that the f
and b appearing in [31] are both zero. Using (233) in (232) and reducing to only one elastic
phase, we obtain:

∇X̄ ·
(
〈CM+C〉s : ∇X̄u(0) +

(
〈CQ〉s − 〈(G(0)

f )T〉f
)

p(0)
)
= 0 (240)

We are able to make the identifications between the equation of [31] using a generalised
ansatz and our Equation (240), where a specific ansatz is used. The term Cex(u0) can be
identified with our term C : ∇X̄u(0). Similarly, the term Cey(N(p0,∇xu0)) can lead to our
terms CM : ∇X̄u(0) +CQp(0) when using our ansatz. Finally, we need to compare the term
φ1(p0,∇xu0)∇x p0 appearing in [31] with the final term in (240). The final term in (240) can
be expanded as:

−∇X̄ ·
(
〈(G(0)

f )T〉f p(0)
)
= −〈(G(0)

f )T〉f∇X̄ p(0) − (∇X̄ · 〈G(0)
f 〉f)p(0) (241)

The term φ1(p0,∇xu0)∇x p0 can be identified with the first term in (241), and when
we assume that G(0)

f is a constant, then we recover exactly the macroscale elasticity equation
of [31].

We also wish to make a comparison between the cell problems found in [31] and our
cell problems. The fluid cell problem (143)–(145) matches exactly the first cell problem
found in [31]. We however do not require the second cell problem found in [31] as we
do not include any forces in our formulation, so f = 0. We also have the two elastic cell
problems (205)–(210) and (211)–(216), and these cannot be directly compared with the cell
problems found in [31] as these arise after the application of a specific ansatz. We can
however compare the elastic problem of [31] with (165) and (169), and it is clear that if (165)
and (169) are identical, up to a choice of sign, to the balance equation of [31]’ and continuity
of stresses, then the same ansatz would produce the same cell problems.
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4.4. Comparison with Nonlinear Elastic Composites

We now consider the case that our structure has no pores and therefore can be de-
scribed as a composite comprised of two hyperelastic materials. We can instantly reduce
our model (231) by removing the equations that govern the fluid. We are able to obtain the
model derived in [33], where we make the assumption that plastic distortions are absent,
that is assuming Fp = I in [33].

When we assume that Fp = I in [33], then we have that the plastic Green–Lagrange

strain tensor E(0)
p = 1

2 ((F
(0)
p )TF(0)

p − I) = 1
2 (I− I) = 0. This means the first Piola stress

obtained in [33] becomes:
T(0)

lin = CR : H, (242)

and we can make the identifications in the notation that CR = C and T(0)
lin = σ

(0)
lin in our

case. Therefore, the first Piola stress tensor (194), that we obtained here matches the first
Piola stress obtained by [33].

We should note that within this work, we use notation to specifically identify the two
constituents of the composite, whereas [33] kept the different constituents implicit. We can
modify our problem (197)–(202) to remove the involvement of the fluid. We therefore end
up with the problem for elastic composites, which is given by:

∇Ȳ · (CI∇Ȳ(u
(1)
I )) +∇Ȳ · (CI∇X̄(u(0))) = 0 in Ω0

I , (243)

∇Ȳ · (CII∇Ȳ(u
(1)
II )) +∇Ȳ · (CII∇X̄(u(0))) = 0 in Ω0

II, (244)

u(1)
I = u(1)

II on Γ0
III, (245)

CI∇Ȳ(u
(1)
I )n0

III −CII∇Ȳ(u
(1)
II )n0

III = (CII −CI)∇X̄(u(0))n0
III on Γ0

III. (246)

When using the notation of [33], we can write (243)–(246) as:

DivȲT(0) = 0, (247)

[[u(1)]] = 0, (248)

[[T(0) ·N]] = 0. (249)

This matches identically the problem given by [33]. The reduced problem (243)–(246)
has the ansatz:

u(1)
I = AI∇X̄u(0) and u(1)

II = AII∇X̄u(0), (250)

where AI and AII are third rank tensors. This is the ansatz (203) and (204) where we take
p(0) = 0. This leads to the cell problem for AI and AII:

∇Ȳ · (CI∇Ȳ(AI)) +∇Ȳ ·CI = 0,

∇Ȳ · (CII∇Ȳ(AII)) +∇Ȳ ·CII = 0,

AI = AII,

CI∇Ȳ(AI)n0
III −CII∇Ȳ(AII)n0

III = (CII −CI)n0
III,

(251)

which is again cell problem (205)–(210) reduced under the assumption that our material
has no pores. In [33], they remarked about the case of no plastic distortions occurring and
stated the cell problem they obtained under those circumstances, and this is identical to
the cell problem (251) where we make the identification that TGradȲξ = ∇Ȳ A = M in our
work and where we use the implicit notation that:

M =

{
MI in Ω0

I ,

MII in Ω0
II.

(252)
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Therefore, the cell problem from [33] that matches (251) is given by:
DivȲ(C + C : TGradȲξ) = 0,

[[ξ]] = 0,

[[(C + C : TGradȲξ) ·N]] = 0.

(253)

Finally, under the assumption of no fluid-filled pores, our macroscale model (231) can
be reduced to: {

∇X̄ · σEff = 0,

σEff = 〈CIMI +CI +CIIMII +CII〉s∇X̄u(0).
(254)

We can make the identification that σEff = Ĉ : GradX̄u(0), then we can see that (254)
matches the model obtained in [33] in the absence of plastic distortions. This is given by:{

DivX̄〈Ĉ : GradX̄u(0)〉s = 0,

〈Ĉ : GradX̄u(0)〉s = 〈C : TGradȲξ + C 〉sGradX̄u(0).
(255)

Therefore, we can conclude that our model for nonlinear poroelastic composites can
reduce to the model of [33] under the assumption of no plastic distortions.

5. Concluding Remarks

We derived a novel framework consisting of partial differential equations that describe
the effective mechanical behaviour of nonlinear poroelastic composites. These structures
are comprised of a porous hyperelastic matrix with embedded hyperelastic subphases, both
of which interact with the fluid flowing in the pores. This type of structure is applicable
to many real-world situations, including modelling of soft biological tissues. We began
by considering the multiphase fluid–structure interaction (FSI) problem among all the
constituents. The problem is closed by appropriate interface conditions arising from the
continuity of stresses, displacements and velocities. We also performed a coordinate trans-
formation on certain quantities in the FSI problem in order to obtain a formulation in the
reference configuration. We exploited the length scale separation between the pore-scale
(where the pores and elastic subphases are clearly visible) and the macroscale (average
size of the material domain) to apply the asymptotic homogenization technique to the
nondimensionalised system of PDEs in order to obtain a macroscale system of governing
equations. We were able to recover previously known results in the literature by consider-
ing particular limit cases of our model. The new model encodes the detailed properties of
the microstructure in its coefficients, that is the microstructural details are encoded in the
effective hydraulic conductivity tensor, the Biot modulus and Biot’s tensor of coefficients.
These are computed by solving the arising differential problems on the periodic cell.

The model obtained here is a generalisation of the formulations for multiphase elasto-
plastic composites [33] in the limit of no plastic distortions and the formulations of hy-
perelastic porous media [31]. The model is also a natural extension to the formulation
for linear poroelastic composites [27]. All three of these models are recovered as partic-
ular cases of our new macroscale model. The key novelty of this work is the ability to
describe a scenario where the hyperelastic matrix is inhomogeneous at the pore-scale, that
is we are able to account for the interactions between various hyperelastic phases and
the fluid flowing in the pores. This is generally the case in biological tissues. This means
that this model is applicable to a wide range of biological scenarios including modelling
lungs. The lungs have previously been approached in a biphasic (tissue and air) man-
ner [9]. However, the lung microstructure is more complex, and there exist collagen and
elastin fibres embedded in the matrix and in the fluid, so it could therefore be beneficial
to use a nonlinear poroelastic composite approach to modelling. Another example is [12],
where the interaction between pulsatile blood flow and the arterial wall mechanics was
modelled. The blood flow was modelled as an incompressible viscous fluid, confined
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by Biot’s equations of poroelasticity for the artery wall. This model could be generalised
by considering the wall as a nonlinear poroelastic composite of the type we modelled in
this work. The formulation of standard nonlinear poroelasticity is applicable when the
solid phase can be approximated as a homogeneous matrix. The linear formulation of
poroelastic composites is applicable to situations where the deformations are small such as
in hard hierarchical material such as bones (see, e.g., [28,47]). Our novel model provides a
formulation that bridges a gap that has not previously been considered and can be grouped
with those found in [17] for strength homogenization, nonsaturated microporomechanics,
microporoplasticity and microporofracture and microporodamage theory as an extension
to the nonlinear homogenization of porous media.

There are some limitations of the current model, and there are a number possible
theoretical extensions that could potentially improve its applicability to certain biological
systems. At present, the macroscale model is derived by accounting for a quasistatic regime
and only considering the incompressibility of the fluid. Within this work, we used the
de Saint-Venant strain energy function for the sake of simplicity. To study a wider range
of scenarios, we would need to select a variety of more detailed constitutive laws and
then use those to formulate the problem before finding the corresponding cell problems
and the homogenized macroscale model. Strain–energy functions specific to certain ap-
plications could be used in our formulation, for example the Holzapfel–Ogden Law for
the myocardium. Another possible extension, which would be of particular interest, is
to incorporate growth and remodelling in our framework. Growth and remodelling are
of particular importance to settings such as arteries or heart subject to disease or ageing.
Finally, a third theoretical extension we could consider would be the assumption that the
solid matrix and the subphases are both incompressible, in addition to the fluid incompress-
ibility, which was already assumed in this work. This would require the incompressibility
constraint to be imposed when defining the strain energy function and when determin-
ing the Piola stresses in the material. This would lead to alternative cell problems and
macroscale model. Moreover, it would be possible to assume that the fluid was in fact
compressible, and this would lead to the appearance of the fluid bulk modulus in the
resulting Biot’s modulus of our system. This modification could be particularly useful to
modelling applications in lungs where acoustic properties can be used to aid the diagnosis
of respiratory diseases [9,48]. It would also be possible to consider a three-scale approach
where there would exist an intermediate local scale between the pore-scale and macroscale
that is still well separated. To do this, we could follow the approach taken in [49,50] for
fibre-reinforced composites.

There are a number of potential next steps for this work; however, potentially the
most important of these is to investigate the model by numerical simulations. Recently, the
numerical simulations of the cell problems arising from the asymptotic homogenization
technique when studying linear elastic composites and linear poroelasticity were carried
out by [40,44]. The simulations for a linear poroelastic composite could be obtained by
using the techniques in [40,44] to compute the poroelastic coefficients in the linear problem.
Obtaining numerical results for the nonlinear macroscale model is significantly more
complex due to the coupling between the macroscale variables and the cell problems.
Developing suitable computational schemes is a current active area of research. A recent
example of a proposed method that could be potentially used to solve the types of problems
arising in this work is found in [45]. It is important to note that the potential results of
any simulations should be validated by experimental data, which could be related to
biological tissues.
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