33 research outputs found

    Investigating microbial and environmental drivers of nitrification in alkaline forest soil

    Get PDF
    Ammonia oxidation is a key step in the biogeochemical cycling of nitrogen, and soils are important ecosystems for nitrogen flux globally. Approximately 25% of the worldā€™s soils are alkaline. Whilst nitrification has been studied more extensively in agricultural alkaline soils, less is known about natural, unfertilized alkaline soils. In this study, microorganisms responsible for ammonia oxidation and several environmental factors (season, temperature, ammonia concentration and moisture content) known to affect nitrification were studied in an alkaline forest soil with a pH ranging from 8.36 to 8.77. AOB, AOA and comammox were present and AOB belonging to genera Nitrosospira and Nitrosomonas, originally comprising <0.01% of the total bacterial community, responded rapidly to ammonia addition to the soil. No significant difference was observed in nitrification rates between seasons, but there was a significant difference between in situ field nitrification rates and rates in laboratory microcosms. Surprisingly, nitrification took place under many of the tested conditions but there was no detectable increase in the abundance of any recognisable group of ammonia oxidisers. This study raises questions about the role of low-abundance microorganisms in microbial processes and of situations where zero or very-low microbial growth coincides with metabolic activity. In addition, this study provides insights into nitrification in unfertilized alkaline soil and supports previous studies which found that AOB play an important role in alkaline soils supplemented with ammonia, including agricultural ecosystems

    Pan-Domain Analysis of ZIP Zinc Transporters

    Get PDF
    The ZIP (Zrt/Irt-like protein) family of zinc transporters is found in all three domains of life. However, little is known about the phylogenetic relationship amongst ZIP transporters, their distribution, or their origin. Here we employed phylogenetic analysis to explore the evolution of ZIP transporters, with a focus on the major human fungal pathogen, Candida albicans. Pan-domain analysis of bacterial, archaeal, fungal, and human proteins revealed a complex relationship amongst the ZIP family members. Here we report (i) a eukaryote-wide group of cellular zinc importers, (ii) a fungal-specific group of zinc importers having genetic association with the fungal zincophore, and, (iii) a pan-kingdom supercluster made up of two distinct subgroups with orthologues in bacterial, archaeal, and eukaryotic phyla

    Ammonia oxidation is not required for growth of GroupĀ 1.1c soil Thaumarchaeota

    Get PDF
    Ā© FEMS 2015. FUNDING EBW is funded by Centre for Genome Enabled Biology and Medicine, University of Aberdeen.Peer reviewedPublisher PD

    Inhibition of ammonia monooxygenase from ammonia oxidising archaea by linear and aromatic alkynes

    Get PDF
    Ammonia monooxygenase (AMO) is a key nitrogen-transforming enzyme belonging to the same copper-dependent membrane monooxygenase family (CuMMO) as the particulate methane monooxygenase (pMMO). The AMO from ammonia-oxidizing archaea (AOA) is very divergent from both the AMO of ammonia-oxidizing bacteria (AOB) and the pMMO from methanotrophs, and little is known about the structure or substrate range of the archaeal AMO. This study compares inhibition by C 2 to C 8 linear 1-alkynes of AMO from two phylogenetically distinct strains of AOA, " Candidatus Nitrosocosmicus franklandus" C13 and " Candidatus Nitrosotalea sinensis" Nd2, with AMO from Nitrosomonas europaea and pMMO from Methylococcus capsulatus (Bath). An increased sensitivity of the archaeal AMO to short-chain-length alkynes (ā‰¤C 5) appeared to be conserved across AOA lineages. Similarities in C 2 to C 8 alkyne inhibition profiles between AMO from AOA and pMMO from M. capsulatus suggested that the archaeal AMO has a narrower substrate range than N. europaea AMO. Inhibition of AMO from " Ca Nitrosocosmicus franklandus" and N. europaea by the aromatic alkyne phenylacetylene was also investigated. Kinetic data revealed that the mechanisms by which phenylacetylene inhibits " Ca Nitrosocosmicus franklandus" and N. europaea are different, indicating differences in the AMO active site between AOA and AOB. Phenylacetylene was found to be a specific and irreversible inhibitor of AMO from " Ca Nitrosocosmicus franklandus," and it does not compete with NH 3 for binding at the active site. IMPORTANCE Archaeal and bacterial ammonia oxidizers (AOA and AOB, respectively) initiate nitrification by oxidizing ammonia to hydroxylamine, a reaction catalyzed by ammonia monooxygenase (AMO). AMO enzyme is difficult to purify in its active form, and its structure and biochemistry remain largely unexplored. The bacterial AMO and the closely related particulate methane monooxygenase (pMMO) have a broad range of hydrocarbon cooxidation substrates. This study provides insights into the AMO of previously unstudied archaeal genera, by comparing the response of the archaeal AMO, a bacterial AMO, and pMMO to inhibition by linear 1-alkynes and the aromatic alkyne, phenylacetylene. Reduced sensitivity to inhibition by larger alkynes suggests that the archaeal AMO has a narrower hydrocarbon substrate range than the bacterial AMO, as previously reported for other genera of AOA. Phenylacetylene inhibited the archaeal and bacterial AMOs at different thresholds and by different mechanisms of inhibition, highlighting structural differences between the two forms of monooxygenase

    Genome Sequence of ā€œCandidatus Nitrosocosmicus franklandusā€ C13, a Terrestrial Ammonia-Oxidizing Archaeon

    Get PDF
    ā€œCandidatus Nitrosocosmicus franklandusā€ C13 is an ammonia-oxidizing archaeon (AOA) isolated from soil. Its complete genome is 2.84 Mb and possesses predicted AOA metabolic pathways for energy generation and carbon dioxide fixation but no typical surface layer (S-layer) proteins, only one ammonium transporter, and divergent A-type ATP synthase genes

    Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together

    Get PDF
    Ammonia oxidation is a fundamental core process in the global biogeochemical nitrogen cycle. Oxidation of ammonia (NH3) to nitrite (NO2 āˆ’) is the first and rate-limiting step in nitrification and is carried out by distinct groups of microorganisms. Ammonia oxidation is essential for nutrient turnover in most terrestrial, aquatic and engineered ecosystems and plays a major role, both directly and indirectly, in greenhouse gas production and environmental damage. Although ammonia oxidation has been studied for over a century, this research field has been galvanised in the past decade by the surprising discoveries of novel ammonia oxidising microorganisms. This review reflects on the ammonia oxidation research to date and discusses the major gaps remaining in our knowledge of the biology of ammonia oxidation

    Soil, senescence and exudate utilisation: characterisation of the Paragon var. spring bread wheat root microbiome

    Get PDF
    Background: Conventional methods of agricultural pest control and crop fertilisation are unsustainable. To meet growing demand, we must find ecologically responsible means to control disease and promote crop yields. The root-associated microbiome can aid plants with disease suppression, abiotic stress relief, and nutrient bioavailability. The aim of the present work was to profile the community of bacteria, fungi, and archaea associated with the wheat rhizosphere and root endosphere in different conditions. We also aimed to use 13CO2 stable isotope probing (SIP) to identify microbes within the root compartments that were capable of utilising host-derived carbon. Results: Metabarcoding revealed that community composition shifted significantly for bacteria, fungi, and archaea across compartments. This shift was most pronounced for bacteria and fungi, while we observed weaker selection on the ammonia oxidising archaea-dominated archaeal community. Across multiple soil types we found that soil inoculum was a significant driver of endosphere community composition, however, several bacterial families were identified as core enriched taxa in all soil conditions. The most abundant of these were Streptomycetaceae and Burkholderiaceae. Moreover, as the plants senesce, both families were reduced in abundance, indicating that input from the living plant was required to maintain their abundance in the endosphere. Stable isotope probing showed that bacterial taxa within the Burkholderiaceae family, among other core enriched taxa such as Pseudomonadaceae, were able to use root exudates, but Streptomycetaceae were not. Conclusions: The consistent enrichment of Streptomycetaceae and Burkholderiaceae within the endosphere, and their reduced abundance after developmental senescence, indicated a significant role for these families within the wheat root microbiome. While Streptomycetaceae did not utilise root exudates in the rhizosphere, we provide evidence that Pseudomonadaceae and Burkholderiaceae family taxa are recruited to the wheat root community via root exudates. This deeper understanding crop microbiome formation will enable researchers to characterise these interactions further, and possibly contribute to ecologically responsible methods for yield improvement and biocontrol in the future

    Isolation of ā€˜Candidatus Nitrosocosmicus franklandusā€™, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration

    Get PDF
    Acknowledgements The authors would like to thank Mr Kevin Mackenzie and Mrs Gillian Milne (University of Aberdeen) for technical support with scanning electron microscopy, and Dr Robin Walker for access to the Woodlands Field experimental plots at the SRUC,Craibstone Estate, Aberdeen. Funding This work was financially supported by Natural Environmental Research Council (standard grants NE/I027835/1 and NE/L006286/1 and fellowship NE/J019151/1), EC Marie Curie ITN NORA, Grant Agreement No. 316472, the AXA Research Fund and the Centre for Genome Enabled Biology and Medicine, University of Aberdeen.Peer reviewedPublisher PD
    corecore