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Abstract: The ZIP (Zrt/Irt-like protein) family of zinc transporters is found in all three domains
of life. However, little is known about the phylogenetic relationship amongst ZIP transporters,
their distribution, or their origin. Here we employed phylogenetic analysis to explore the evolution
of ZIP transporters, with a focus on the major human fungal pathogen, Candida albicans. Pan-domain
analysis of bacterial, archaeal, fungal, and human proteins revealed a complex relationship amongst
the ZIP family members. Here we report (i) a eukaryote-wide group of cellular zinc importers,
(ii) a fungal-specific group of zinc importers having genetic association with the fungal zincophore,
and, (iii) a pan-kingdom supercluster made up of two distinct subgroups with orthologues in bacterial,
archaeal, and eukaryotic phyla.
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1. Introduction

Zinc is an essential micronutrient for all living organisms. This is because many proteins
(particularly enzymes and transcription factors) require zinc to function. In fact, 9% of eukaryotic
proteins are predicted to interact with this metal. As well as acting as an essential cofactor for proteins
involved in a large number of cellular processes, zinc can also be toxic if present in excess. Therefore,
zinc acquisition, homeostasis, and detoxification is crucial for cell survival and proliferation. However,
pathogenic microbes have to deal with extremes in zinc bioavailability due to the action of nutritional
immunity. This term describes a variety of host processes which manipulate microbial exposure to
trace metals, particularly zinc, iron, manganese, and copper. For example, following phagocytosis by
macrophages, bacterial cells can face potential zinc and copper toxicity [1]. However, most examples
of nutritional immunity involve host-driven metal sequestration together with microbial starvation [2].

Many bacterial pathogens utilise an ABC (ATP-binding cassette) transporter (ZnuABC) for
high-affinity zinc uptake during infection. These systems consist of a substrate-binding protein
ZnuA, permease ZnuB, and ATPase (ZnuC). An increasing body of literature is demonstrating an
important role for ZnuABC-mediated zinc assimilation in bacterial pathogenicity. For a recent review
on bacterial zinc assimilation, readers are directed to Capdevila et al. [3].

In contrast, with the exception of some recent studies in fungi, far less is known about how zinc
homeostasis in eukaryotic pathogens influences their virulence. Zinc import via a ZnuABC-like
system has not been reported in eukaryotes. Rather, they appear to predominantly employ
ZIP-type transporters for cellular zinc import [4]. The name derives from fungal Zrt (zinc regulated
transporter) [5] and plant Irt (iron-regulated transporter) [6] proteins.

However, the understanding of this ZIP-mediated zinc transport is complicated by the architecture
of the eukaryotic cell. Unlike most bacteria and archaea, where cellular import only occurs at the
plasma membrane, eukaryotic ZIPs can also deliver zinc from various intracellular organelles into
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the cytoplasm. Metal promiscuity may also confound phylogenetic interpretation: certain bacterial
ZIPs have been shown to transport multiple metals. For example, Salmonella enterica ZupT transports
both zinc and manganese [7]. In eukaryotes, different ZIP transporters can transport different metals.
For example, Saccharomyces cerevisiae Atx2 is implicated in Golgi manganese homeostasis [8]. However,
most eukaryotic ZIPs are implicated in zinc transport [4].

S. cerevisiae is one of the best understood models of eukaryotic ZIP-mediated zinc transport.
This yeast encodes five ZIP transporters: two plasma membrane importers and three intracellular
organellar transporters. There is an emerging and important role for ZIP transporters in the
pathogenicity of human fungal pathogens [9–12], but little is known about the phylogeny, distribution,
or origin of these transporters either within fungal pathogens or throughout different domains of
life. Here we take advantage of OrthoMCL, to investigate the evolution of ZIP-type zinc transporters,
with a focus on the medically important fungus Candida albicans.

2. Phylogenetic Analysis of ZIP Transporter

In order to investigate their phylogenetic relationships, ZIP orthologue groups were constructed
using OrthoMCL (Available online: http://orthomcl.org/orthomcl/) [13]. OrthoMCL generates
orthologue superclusters from 36 Bacteria (including six Firmicutes and 19 Proteobacteria), 16 Archaea,
9 Euglenozoa (Trypanosomes, Leishmania), 4 Amoebae, 11 Viridiplantae (plants, algae), 15 Alveolates
(e.g., Apicomplexa such as Plasmodium), 24 Fungi (including 4 Basidiomycetes, 3 Microsporidia,
and 17 Ascomycetes), 29 Metazoa, and 6 miscellaneous Eukaryotes (Oomycete, Giardia) genomes.

This approach resulted in 38 orthologue groups with ZIP zinc transporter Pfam annotations.
The majority of these contained only few poorly connected ZIP proteins, and several represented
likely expansions in metazoans or Viridiplantae; that is, likely associated with the development of
multicellularity. However, several superclusters of interest were identified, which we discuss below.

3. Conserved Plasma Membrane Importer Cluster (OG5_126707)

OG5_126707 member ZIP transporters were exclusively eukaryotic and contained transporters
from all studied eukaryotic groups. Figure 1 shows the cluster graph of OG5_126707. With the
exception of the three Microsporidian species, fungal orthologues clustered together, as did
Viridiplantae, Euglenozoa parasites (e.g., Trypanosomes), and to a lesser extent, Alveolates. Amoebic
orthologues (blue circles) distributed between parasite clusters. The large cluster to the central right of
Figure 1 includes Metazoan ZIP transporters. Not only were all eukaryotic groups represented in this
supercluster, but most analysed species were also present. For example, 23 of the 24 analysed fungal
species were represented.
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Several members of the OG5_126707 supercluster have already been characterised. These include
human ZIP1 and ZIP3, S. cerevisiae Zrt1 and Zrt2, S. pombe Zrt1, A. fumigatus ZrfA and ZrfB,
C. neoformans Zip1 and Zip2, C. albicans Zrt2, and Leishmania infantum. Notably, all 11 of these
transporters are implicated in cellular zinc import at the plasma membrane [5,11,14–19].

4. The Fungal Zincophore Locus Cluster (OG5_141027)

This cluster was unique to fungi (with the exception of two very loosely connected Trypanosomal
sequences). However, unlike OG5_126707 which included 23 of the 24 fungal species, this cluster only
contained 10 species. These included C. albicans (Zrt1) and A. fumigatus (ZrfC). Interestingly, both of
these transporters have been reported to be up-regulated specifically at neutral/alkaline pH, and in the
case of C. albicans Zrt1, to act as a cell surface docking protein for the secreted zincophore, Pra1 [20,21].
We have previously reported that the Zrt1 and Pra1 encoding genes are syntenic, not only in C. albicans,
but in multiple fungal species [21,22]. Moreover, for C. albicans and A. fumigatus, the gene pairs are
known to be co-expressed in response to zinc limitation [20,21]. Based on these observations, we have
proposed that the ZRT1/PRA1 locus may function as a conserved zincophore/receptor in multiple
fungal species [22]. We therefore interrogated the genetic loci of those species identified in cluster
OG5_141027. Gene order analysis revealed that seven of the 10 species here have maintained a syntenic
relationship between orthologues of C. albicans PRA1 and ZRT1. Two species—Yarrowia lipolytica
and Neurospora crassa—have lost PRA1, and in one (Gibberella zeae, also called Fusarium graminearum),
PRA1-ZRT1 synteny has broken. One of the PRA1-negative species, Yarrowia lipolytica, has undergone
duplication and divergence of the Zrt1 orthologue (Figure 2).
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Figure 2. The fungal zincophore locus cluster (OG5_141027). Clustering performed using OrthoMCL.
Orthologues of the zincophore-associated ZIP, Zrt1 (zinc regulated transporter 1) in C. albicans are
specific to the fungal kingdom.

These observations are similar to our previous study—of 16 selected species analysed in Citiulo
et al., 10 encoded PRA1 orthologues and, of these 10 species, six maintained synteny with a ZRT1
orthologue. To examine how widespread the syntenic relationship is, we interrogated the NCBI
database. Of 102 species analysed, we identified Pra1 orthologues in 87 (85.3%) species and, of the
Pra1+ species, 61 (70.1%) have maintained a syntenic relationship between PRA1 and ZRT1 (Table S1).

The fact that only ascomycete ZIPs were identified within this OrthoMCL cluster is probably
due to the low number of basidiomycete species present in this database. In fact, BLASTp analysis of
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C. albicans Zrt1 against non-ascomycetes identified numerous ZIPs which reciprocally hit C. albicans
Zrt1. Moreover, both ascomycete and basidiomycete species exhibit synteny of zincophore and ZIP
orthologues (see [21] and Table S1).

While it should be pointed out that both PRA1 [21] and ZRT1 [22] orthologues have been
lost multiple times throughout the fungal kingdom, this indicates that, when present, the genes
tend to share a syntenic relationship. This most likely serves to simplify modular co-expression.
The observations reported here support our earlier conclusion that PRA1-ZRT1 synteny represents an
ancient and highly successful adaption within the fungal kingdom [21].

5. The ZupT/ZIP11/Zrt3 Pan-Domain Supercluster (OG5_127397)

The OG5_127397 supercluster (Figure 3) was the only cluster to contain ZIP proteins from all
three domains of life. In fact, all phyla, with the exception of Alveolate and Euglenozoa parasites
were represented.
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Clustering performed using OrthoMCL. Note the separation of eukaryotic (Fungi and Metazoan)
subclusters by prokaryotic proteins.

A number of bacterial (16) and archaeal (5 or 6) members were present in the OG5_127397
supercluster. No archaeal ZIP transporters have been studied to-date. In bacteria, the Zip transporter,
ZupT, has been characterised in Escherichia coli, Cupriavidus metallidurans, and Salmonella enterica. In all
three species, a role in zinc import has been described [7,23,24]. E. coli ZupT appears to transport
several other cations in addition to zinc [25], and S. enterica ZupT imports both zinc and manganese [7].

Orthologues were present throughout the fungal kingdom, but are absent from the Microsporidia
and Basidiomycota. The S. cerevisiae member, Zrt3, has been shown to transport zinc out of the fungal
vacuole [26], and our own work indicates that the C. albicans orthologue plays a similar role [27].
The human member, ZIP11, has been implicated in Golgi zinc transport [28].

Based on similarity between human ZIP11 and bacterial ZIP (ZupT) proteins, Yu et al. [27]
have proposed that this family represents the most ancient ZIP [27], present in the last universal
common ancestor.

Similarly, the identification of S. cerevisiae Zrt3 led to the recognition of prokaryotic ZIP-type
transporters in the first place, as Zrt3 (but not the previously characterised yeast Zrt1 and Zrt2) shared
sequence similarity with bacterial and archaeal proteins [26].

In this context, the position of metazoan ZIP11, fungal Zrt3, and prokaryotic ZupT within the
same supercluster is in line with an ancient origin [26,29].
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Surprisingly, however, Fungal (Zrt3) and Metazoan (ZIP11) clusters were very distinct, and both
had higher similarity to prokaryotic ZIPs than to each other (Figure 3). Furthermore, direct alignments
showed that fungal Zrt3 and human ZIP11 shared only 28% sequence identity (e-value 3.1 × 10−2).
This was unexpected, as within the Eukarya, fungi and metazoans are very closely related [30].
This suggests that fungal Zrt3 and metazoan ZIP11 may not be closely related.

We therefore compared fungal (Zrt3-type) and metazoan (ZIP11-type) with more bacterial and
archaeal sequences.

In order to capture bacterial and archaeal diversity as broadly as possible, fungal (C. albicans Zrt3)
and metazoan (human ZIP11) sequences were subjected to individual BLASTp searches against
Firmicutes, Proteobacteria, Actinobacteria, Spirochetes, Euryarchaeota, and Crenarchaeota species
available at NCBI. These analyses identified predicted ZIP transporters in all six prokaryotic phyla.

Sequence similarities between fungal Zrt3 and prokaryotic best hits were 30–40% (e-value
1016–1015) for bacteria, and even lower, ≤30% identity (e-value ~10−12), for archaea. Sequence similarity
between fungal Zrt3 and bacterial proteins was limited to the C-terminal 200 amino acids. Indeed,
when we repeated BLASTp analysis with the C-terminal 200 amino acids alone, we identified greater
similarity (e-value 6 × 10−19). No sequence identity was observed for the N-terminal 391 amino acids
out with the fungal kingdom.

We observed a higher degree of sequence similarity between Hs ZIP11 and bacterial and archaeal
species (~45% identity, e-value 10−81–10−60).

Next, we aligned fungal, mammalian, bacterial, and archaeal species’ ZIP sequences using
Phylo.fr [31,32]. The resulting tree formed two distinct branches: one containing the fungal Zrt3 and
the other, metazoan ZIP11 (Figure 4). Remarkably, both branches contained ZIP transporters from
Firmicutes, Proteobacteria, Actinobacteria, Spirochete, and Euryarchaeota species, whilst the Human
Zip11 branch rooted against the two identified Crenarchaeota. This suggests that prokaryotes have
two different ZIP transporters: one related to fungal Zrt3 and the other to metazoan ZIP11.
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If this is the case, we may anticipate the existence of extant prokaryotic species with both types.
Indeed, the respective best hits of fungal Zrt3 and metazoan ZIP11 against Spirochetes were two
independent ZIP transporters in the same species: Marispirochaeta aestuarii (Figure 4).

We therefore subjected human ZIP11 to BLASTp analysis against prokaryotic species which
were identified in the fungal Zrt3 search, and vice versa. In most cases, we identified the
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same ZIP as in the previous search round, or the sequence similarity was too low to return a
subject. However, when we queried fungal Zrt3 against the Firmicute Planomicrobium flavidum and
the Euryarchaeota Methanofollis ethanolicus (two species which had metazoan ZIP11 orthologues),
we identified independent ZIP transporters. The ZIP pairs from these three species clustered on the
two distinct branches of the tree (Figure 4). Therefore, it would appear that these three prokaryotic
species encode two independent ZIP transporters.

This is interesting because it demonstrates the existence of two distinct classes of ZIP transporter
in multiple prokaryotic phyla.

Although fungal Zrt3 and metazoan ZIP11 were identified as belonging to the same
orthologue supercluster, their similarity was very low (identity 28%, e-value 3.1 × 10−2). Moreover,
their relationship to distinct prokaryotic proteins (Figures 3 and 4) is not suggestive of a close
phylogenetic relationship.

We therefore performed BLASTp analysis of fungal Zrt3 excluding the fungal kingdom (NCBI).
Intriguingly, outside of the fungal kingdom, Zrt3 shares highest similarity with bacterial sequences
and not with other Eukaryotes, as would be expected.

We therefore systematically analysed ZupT from Desulfovermiculus halophilus (which was one of
the bacterial ZIPs with highest similarity to fungal Zrt3) against the major eukaryotic phyla.

D. halophilus ZupT did not share sequence identity with any proteins within the Parabasalia,
Diplomonadida, Ciliophora, or Euglenozoa. Only one species within the Heterolobosea
(the Apicomplexa), and a handful of Dictyostelium and Acytostelium species within the Mycetozoa had
proteins with similarity to D. halophilus ZupT (not shown).

We retrieved a large number of hits from within the Heterokonta (e-value 7 × 10−60 [47% identity]
to e-value 4 × 10−26 [28% identity]) and Viridiplantae (10−50, 43% identity) and, of those top hits
analysed, they aligned to the fungal Zrt3 branch of Figure 4. Within the Metazoa, we did identify ZIP
transporters with sequence similarity to D. halophilus ZupT, but (with the exception of Oikopleura dioica)
these aligned to the human ZIP11 branch of the tree (not shown).

Therefore, it appears that the origin of fungal Zrt3 is complex. It is possible that the gene was
inherited vertically into the fungi, and that it has been lost multiple times within extant eukaryotic
lineages. However, given the absence of Zrt3 orthologues from basal eukaryotes, its acquisition via
horizontal gene transfer may represent an alternative explanation.

We note that the observed similarities of ZIP11 and Zrt3 with prokaryotic proteins are in agreement
with the conclusions of both MacDiarmid (2000) and Yu (2013) [26,29], that these proteins may represent
ancient ZIP transporters in metazoans and in fungi, respectively. However, the diversity of bacterial
and archaeal protein sequences within this orthologue supercluster (Figure 4) suggests that they arose
from distinct genes.

In summary, our analysis of fungal ZIP transporters indicates that there are three major orthologue
groups with different degrees of conservation within and outside of the eukaryotes.

(i) A conserved group of eukaryotic proteins (OG5_126707) encompassing fungal, metazoan, and
parasite plasma membrane importers; (ii) A fungal-specific group of zinc importers (OG5_141027),
genetically associated with the fungal zincophore; (iii) A pan-domain supercluster (OG5_127397),
formed of two distinct groups with orthologues in all three domains of life.

At this stage, it is unclear whether eukaryotic members of this supercluster were inherited
vertically or horizontally. However, our analyses indicate the presence of two relatively distinct groups
of ZIP transporters in extant bacterial and archaeal species. Interestingly, the fungal members of this
group appear to be involved in organellar (vacuolar) zinc export, rather than plasma membrane import.

Since the emergence of the Eukarya, ZIP transporter genes have clearly undergone multiple
rounds of expansion. This is presumably to meet the requirements of an organellar lifestyle and, in the
case of metazoans (humans for example have 14 ZIP family members), multicellularity.
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Because zinc can be highly limited during infection due to the action of nutritional immunity,
understanding the nature of pathogen (and host) zinc transporters may help inform future therapeutic
or diagnostic strategies.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/12/2631/s1.
Table S1. ZIP and zincophore gene synteny. Table lists the presence (denoted by respective accession numbers) or
absence (N) of PRA1 and ZRT1 orthologues in 102 fungal species (NCBI). In species where both genes are present,
column 4 indicates syntenic (Y), or non-syntenic (N) relationship.
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