31 research outputs found

    Effects of Harmful Algal Blooms on Fish and Shellfish Species: A Case Study of New Zealand in a Changing Environment

    Get PDF
    Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world’s protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies

    Comparing sediment DNA extraction methods for assessing organic enrichment associated with marine aquaculture

    Get PDF
    Marine sediments contain a high diversity of micro- and macro-organisms which are important in the functioning of biogeochemical cycles. Traditionally, anthropogenic perturbation has been investigated by identifying macro-organism responses along gradients. Environmental DNA (eDNA) analyses have recently been advocated as a rapid and cost-effective approach to measuring ecological impacts and efforts are underway to incorporate eDNA tools into monitoring. Before these methods can replace or complement existing methods, robustness and repeatability of each analytical step has to be demonstrated. One area that requires further investigation is the selection of sediment DNA extraction method. Environmental DNA sediment samples were obtained along a disturbance gradient adjacent to a Chinook (Oncorhynchus tshawytscha) salmon farm in Otanerau Bay, New Zealand. DNA was extracted using four extraction kits (Qiagen DNeasy PowerSoil, Qiagen DNeasy PowerSoil Pro, Qiagen RNeasy PowerSoil Total RNA/DNA extraction/elution and Favorgen FavorPrep Soil DNA Isolation Midi Kit) and three sediment volumes (0.25, 2, and 5 g). Prokaryotic and eukaryotic communities were amplified using primers targeting the 16S and 18S ribosomal RNA genes, respectively, and were sequenced on an Illumina MiSeq. Diversity and community composition estimates were obtained from each extraction kit, as well as their relative performance in established metabarcoding biotic indices. Differences were observed in the quality and quantity of the extracted DNA amongst kits with the two Qiagen DNeasy PowerSoil kits performing best. Significant differences were observed in both prokaryotes and eukaryotes (p < 0.001) richness among kits. A small proportion of amplicon sequence variants (ASVs) were shared amongst the kits (~3%) although these shared ASVs accounted for the majority of sequence reads (prokaryotes: 59.9%, eukaryotes: 67.2%). Differences were observed in the richness and relative abundance of taxonomic classes revealed with each kit. Multivariate analysis showed that there was a significant interaction between “distance” from the farm and “kit” in explaining the composition of the communities, with the distance from the farm being a stronger determinant of community composition. Comparison of the kits against the bacterial and eukaryotic metabarcoding biotic index suggested that all kits showed similar patterns along the environmental gradient. Overall, we advocate for the use of Qiagen DNeasy PowerSoil kits for use when characterizing prokaryotic and eukaryotic eDNA from marine farm sediments. We base this conclusion on the higher DNA quality values and richness achieved with these kits compared to the other kits/amounts investigated in this study. The additional advantage of the PowerSoil Kits is that DNA extractions can be performed using an extractor robot, offering additional standardization and reproducibility of results.publishedVersio

    Distribution of tetrodotoxin in the New Zealand clam, Paphies australis, established using immunohistochemistry and liquid chromatography-tandem quadrupole mass spectrometry

    Get PDF
    Tetrodotoxin (TTX) is one of the most potent neurotoxins known. It was originally thought to only occur in puffer fish but has now been identified in twelve different classes of freshwater and marine organisms, including bivalves. Despite being one of the world’s most studied biotoxins, its origin remains uncertain. There is contradictory evidence regarding the source of TTX and its pathway through food webs. To date, the distribution of TTX has not been examined in bivalves. In the present study, 48 Paphies australis, a TTX-containing clam species endemic to New Zealand, were collected. Thirty clams were dissected, and organs and tissues pooled into five categories (siphons, digestive gland, adductor muscles, and the ‘rest’) and analyzed for TTX using liquid chromatography-mass spectrometry (LC-MS). The micro-distribution of TTX was visualized in the remaining 18 individuals using an immunohistological technique incorporating a TTX-specific monoclonal antibody. The LC-MS analysis revealed that siphons contained the highest concentrations of TTX (mean 403.8 ”g/kg). Immunohistochemistry analysis showed TTX in the outer cells of the siphons, but also in the digestive system, foot, and gill tissue. Observing TTX in organs involved in feeding provides initial evidence to support the hypothesis of an exogenous source in P. australis

    Alcohol intake and breast cancer in the European prospective investigation into cancer and nutrition

    Get PDF
    Alcohol intake has been associated to breast cancer in pre and postmenopausal women; however results are inconclusive regarding tumor hormonal receptor status, and potential modifying factors like age at start drinking. Therefore, we investigated the relation between alcohol intake and the risk of breast cancer using prospective observational data from the European Prospective Investigation into Cancer and Nutrition (EPIC). Up to 334,850 women, aged 35-70 years at baseline, were recruited in ten European countries and followed up an average of 11 years. Alcohol intake at baseline and average lifetime alcohol intake were calculated from country-specific dietary and lifestyle questionnaires. The study outcomes were the Hazard ratios (HR) of developing breast cancer according to hormonal receptor status. During 3,670,439 person-years, 11,576 incident breast cancer cases were diagnosed. Alcohol intake was significantly related to breast cancer risk, for each 10 g/day increase in alcohol intake the HR increased by 4.2% (95% CI: 2.7-5.8%). Taking 0 to 5 g/day as reference, alcohol intake of >5 to 15 g/day was related to a 5.9% increase in breast cancer risk (95% CI: 1-11%). Significant increasing trends were observed between alcohol intake and ER+/PR+, ER-/PR-, HER2- and ER-/PR-HER2- tumors. Breast cancer risk was stronger among women who started drinking prior to first full-time pregnancy. Overall, our results confirm the association between alcohol intake and both hormone receptor positive and hormone receptor negative breast tumors, suggesting that timing of exposure to alcohol drinking may affect the risk. Therefore, women should be advised to control their alcohol consumption. What's new? Although it is now established that alcohol consumption increases breast cancer risk, many questions remain. Using a prospective study design with 11,576 incident breast cancer cases across 10 European countries, the authors confirmed the increased risk of alcohol on breast cancer development. They further show that women who started drinking before their first full-term pregnancy have a higher risk than women who started afterwards. These effects were observed in hormone-receptor positive and -negative tumors pointing to non-hormonal pathways that need to be further investigated

    ï»żMetagenomic insights to the functional potential of sediment microbial communities in freshwater lakes

    No full text
    Molecular-based techniques offer considerable potential to provide new insights into the impact of anthropogenic stressors on lake ecosystems. Microbial communities are involved in many geochemical cycling processes in lakes and a greater understanding of their functions could assist in guiding more targeted remedial actions. Recent advances in metagenomics now make it possible to determine the functional potential of entire microbial communities. The present study investigated microbial communities and their functional potential in surface sediments collected from three lakes with differing trophic states and characteristics. Surface sediments were analysed for their nutrient and elemental contents and metagenomics and metabarcoding analysis undertaken. The nutrients content of the surface sediments did not show as distinct a gradient as water chemistry monitoring data, likely reflecting effects of other lake characteristics, in particular, depth. Metabarcoding and metagenomics revealed differing bacterial community composition and functional potential amongst lakes. Amongst the differentially abundant metabolic pathways, the most prominent were clusters in the energy and xenobiotics pathways. Differences in the energy metabolism paths of photosynthesis and oxidative phosphorylation were observed. These were most likely related to changes in the community composition and especially the presence of cyanobacteria in two of the three lakes. Xenobiotic pathways, such as those involving polycyclic aromatic hydrocarbons, were highest in the lakes with the greatest agricultural land-use in their catchment. These results highlight how microbial metagenomics can be used to gain insights into the causes of differences in trophic status amongst lakes

    Exploring benthic cyanobacterial diversity and co-occurring potentially harmful dinoflagellates in six islands of the South Pacific

    No full text
    Cyanobacteria represent a potential risk to human health, as they can produce an array of toxic compounds. Proliferations of potentially toxic benthic marine cyanobacteria are predicted to increase in frequency and spread geographically with climate change and eutrophication, especially in tropical lagoons. Benthic cyanobacterial mats harbour many species of other bacteria and eukaryotic organisms, some of which have been linked to human poisonings after consumption of contaminated seafood. Metabarcoding was used to characterize the taxonomic diversity of 66 benthic cyanobacteria-dominated mats collected from six islands in three different countries of the South Pacific: French Polynesia, the Cook Islands and Kingdom of Tonga. Twenty-five potentially toxic cyanobacteria genera were recorded. Although core bacterial communities (excluding cyanobacteria) remained constant amongst mats, there were significant differences both within and between islands, even when the mats were dominated by the same cyanobacteria genera. Dinoflagellata and Ciliophora were the most dominant eukaryotes and seven potentially toxic genera of dinoflagellates co-occurred in the mats. This is the first baseline survey to use metabarcoding to demonstrate the co-occurrence of potentially toxic marine cyanobacteria and dinoflagellates in the Pacific. The results highlight that further research is needed to evaluate the toxicity of the mats in these region

    Molecular Identification of Gambierdiscus and Fukuyoa (Dinophyceae) from Environmental Samples

    No full text
    Ciguatera Fish Poisoning (CFP) is increasing across the Pacific and the distribution of the causative dinoflagellates appears to be expanding. Subtle differences in thecal plate morphology are used to distinguish dinoflagellate species, which are difficult to determine using light microscopy. For these reasons we sought to develop a Quantitative PCR assay that would detect all species from both Gambierdiscus and Fukuyoa genera in order to rapidly screen environmental samples for potentially toxic species. Additionally, a specific assay for F. paulensis was developed as this species is of concern in New Zealand coastal waters. Using the assays we analyzed 31 samples from three locations around New Zealand and the Kingdom of Tonga. Fourteen samples in total were positive for Gambierdiscus/Fukuyoa and two samples were also positive using the F. paulensis assay. Samples from the Kermadec Islands were further characterized using high-throughput sequencing metabarcoding. The majority of reads corresponded to Gambierdiscus species with three species identified at all sites (G. australes, G. honu and G. polynesiensis). This is the first confirmed identification of G. polynesiensis, a known ciguatoxin producer, in New Zealand waters. Other known toxin-producing genera were also detected, included Alexandrium, Amphidinium, Azadinium, Dinophysis, Ostreopsis, and Prorocentrum

    Survey of Tetrodotoxin in New Zealand Bivalve Molluscan Shellfish over a 16-Month Period

    No full text
    Tetrodotoxin (TTX) is a heat-stable neurotoxin typically associated with pufferfish intoxications. It has also been detected in shellfish from Japan, the United Kingdom, Greece, China, Italy, the Netherlands and New Zealand. A recent European Food Safety Authority (EFSA) scientific opinion concluded that a level of &lt;0.044 mg TTX/kg in marine bivalves and gastropods, based on a 400 g portion size, does not result in adverse effects in humans. There have been no reports of human illness attributed to the consumption of New Zealand shellfish containing TTX. To obtain a greater understanding of its presence, a survey of non-commercial New Zealand shellfish was performed between December 2016 and March 2018. During this period, 766 samples were analysed from 8 different species. TTX levels were found to be low and similar to those observed in shellfish from other countries, except for pipi (Paphies australis), a clam species endemic to New Zealand. All pipi analysed as part of the survey were found to contain detectable levels of TTX, and pipi from a sampling site in Hokianga Harbour contained consistently elevated levels. In contrast, no TTX was observed in cockles from this same sampling site. No recreationally harvested shellfish species, including mussels, oysters, clams and tuatua, contained TTX levels above the recommended EFSA safe guidance level. The levels observed in shellfish were considerably lower than those reported in other marine organisms known to contain TTX and cause human intoxication (e.g., pufferfish). Despite significant effort, the source of TTX in shellfish, and indeed all animals, remains unresolved making it a difficult issue to understand and manage
    corecore