13 research outputs found

    Homologous recombination deficiency in newly diagnosed FIGO stage III/IV high-grade epithelial ovarian cancer: a multi-national observational study

    Get PDF
    OBJECTIVE: Olaparib plus bevacizumab maintenance therapy improves survival outcomes in women with newly diagnosed, advanced, high-grade ovarian cancer with a deficiency in homologous recombination. We report data from the first year of routine homologous recombination deficiency testing in the National Health Service (NHS) in England, Wales, and Northern Ireland between April 2021 and April 2022. METHODS: The Myriad myChoice companion diagnostic was used to test DNA extracted from formalin-fixed, paraffin-embedded tumor tissue in women with newly diagnosed International Federation of Gynecology and Obstetrics (FIGO) stage III/IV high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer. Tumors with homologous recombination deficiency were those with a BRCA1/2 mutation and/or a Genomic Instability Score (GIS) ≥42. Testing was coordinated by the NHS Genomic Laboratory Hub network. RESULTS: The myChoice assay was performed on 2829 tumors. Of these, 2474 (87%) and 2178 (77%) successfully underwent BRCA1/2 and GIS testing, respectively. All complete and partial assay failures occurred due to low tumor cellularity and/or low tumor DNA yield. 385 tumors (16%) contained a BRCA1/2 mutation and 814 (37%) had a GIS ≥42. Tumors with a GIS ≥42 were more likely to be BRCA1/2 wild-type (n=510) than BRCA1/2 mutant (n=304). The distribution of GIS was bimodal, with BRCA1/2 mutant tumors having a higher mean score than BRCA1/2 wild-type tumors (61 vs 33, respectively, χ2 test p<0.0001). CONCLUSION: This is the largest real-world evaluation of homologous recombination deficiency testing in newly diagnosed FIGO stage III/IV high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer. It is important to select tumor tissue with adequate tumor content and quality to reduce the risk of assay failure. The rapid uptake of testing across England, Wales, and Northern Ireland demonstrates the power of centralized NHS funding, center specialization, and the NHS Genomic Laboratory Hub network

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma

    Get PDF

    Facial affect processing in patients receiving opioid treatment in palliative care: Preferential processing of threat in pain catastrophizers

    No full text
    Context: As a multidimensional phenomenon, pain is influenced by various psychological factors. One such factor is catastrophizing, which is associated with higher pain intensity and emotional distress in cancer and noncancer pain. One possibility is that catastrophizing represents a general cognitive style that preferentially supports the processing of negative affective stimuli. Such preferential processing of threat—toward negative facial expressions, for example—is seen in emotional disorders and is sensitive to pharmacological treatment. Whether pharmacological (analgesic) treatment might also influence the processing of threat in pain patients is currently unclear. Objectives: This study investigates the effects catastrophizing on processing of facial affect in those receiving an acute opioid dose. Methods: In a double-blind crossover design, the performance of 20 palliative care patients after their usual dose of immediate-release opioid was compared with their performance following matched-placebo administration on a facial affect recognition (i.e., speed and accuracy) and threat-pain estimation task (i.e., ratings of pain intensity). The influence of catastrophizing was examined by splitting the sample according to their score on the Pain Catastrophizing Scale (PCS). Results: Opioid administration had no effect on facial affect processing compared with placebo. However, the main finding was that enhanced processing of fear, sadness, and disgust was found only in patients who scored highly on the PCS. There was no difference in performance between the two PCS groups on the other emotions (i.e., happiness, surprise, and anger). Conclusion: These findings suggest that catastrophizing is associated with an affective information-processing bias in patients with severe pain conditions

    Pharmacological Inhibition of β 3

    No full text
    Adenoviruses have been clinically tested as anticancer therapies but their utility has been severely limited by rapid, systemic cytokine release and consequent inflammatory toxicity. Here, we describe a new approach to tackling these dangerous side effects. Using human ovarian cancer cell lines as well as malignant epithelial cells harvested from the ascites of women with ovarian cancer, we show that tumor cells do not produce cytokines in the first 24 hours following in vitro infection with the oncolytic adenovirus dl922-947. In contrast, dl922-947 does induce inflammatory cytokines at early time points following intraperitoneal delivery in mice with human ovarian cancer intraperitoneal xenografts. In these animals, cytokines originate predominantly in murine tissues, especially in macrophage-rich organs such as the spleen. We use a nonreplicating adenovirus to confirm that early cytokine production is independent of adenoviral replication. Using β3 integrin knockout mice injected intraperitoneally with dl922-947 and β3 null murine peritoneal macrophages, we confirm a role for macrophage cell surface β3 integrin in this dl922-947–induced inflammation. We present new evidence that co-administration of a cyclic RGD-mimetic–specific inhibitor of β3 integrin significantly attenuates the cytokine release and inflammatory hepatic toxicity induced by dl922-947 in an intraperitoneal murine model of ovarian cancer. Importantly, we find no evidence that β3 inhibition compromises viral infectivity and oncolysis in vitro or anticancer efficacy in vivo. By enabling safe, systemic delivery of replicating adenoviruses, this novel approach could have a major impact on the future development of these effective anticancer agents

    RAD51 and BRCA2 enhance oncolytic adenovirus Type 5 activity in ovarian cancer

    No full text
    Homologous recombination (HR) function is critically important in high-grade serous ovarian cancer (HGSOC). HGSOC with intact HR has a worse prognosis and is less likely to respond to platinum chemotherapy and PARP inhibitors. Oncolytic adenovirus, a novel therapy for human malignancies, stimulates a potent DNA damage response that influences overall antitumor activity. Here, the importance of HR was investigated by determining the efficacy of adenovirus type 5 (Ad5) vectors in ovarian cancer. Using matched BRCA2-mutant and wild-type HGSOC cells, it was demonstrated that intact HR function promotes viral DNA replication and augments overall efficacy, without influencing viral DNA processing. These data were confirmed in a wider panel of HR competent and defective ovarian cancer lines. Mechanistically, both BRCA2 and RAD51 localize to viral replication centers within the infected cell nucleus and that RAD51 localization occurs independently of BRCA2. In addition, a direct interaction was identified between RAD51 and adenovirus E2 DNA binding protein. Finally, using functional assays of HR competence, despite inducing degradation of MRE11, Ad5 infection does not alter cellular ability to repair DNA double-strand break damage via HR. These data reveal that Ad5 redistributes critical HR components to viral replication centers and enhances cytotoxicity

    Genomic DNA damage and ATR-Chk1 signaling determine oncolytic adenoviral efficacy in human ovarian cancer cells

    No full text
    Oncolytic adenoviruses replicate selectively within and lyse malignant cells. As such, they are being developed as anticancer therapeutics. However, the sensitivity of ovarian cancers to adenovirus cytotoxicity varies greatly, even in cells of similar infectivity. Using both the adenovirus E1A-CR2 deletion mutant dl922-947 and WT adenovirus serotype 5 in a panel of human ovarian cancer cell lines that cover a 3-log range of sensitivity, we observed profound overreplication of genomic DNA only in highly sensitive cell lines. This was associated with the presence of extensive genomic DNA damage. Inhibition of ataxia telangiectasia and Rad3-related checkpoint kinase 1 (ATR-Chk1), but not ataxia telangiectasia mutated (ATM), promoted genomic DNA damage and overreplication in resistant and partially sensitive cells. This was accompanied by increased adenovirus cytotoxicity both in vitro and in vivo in tumor-bearing mice. We also demonstrated that Cdc25A was upregulated in highly sensitive ovarian cancer cell lines after adenovirus infection and was stabilized after loss of Chk1 activity. Knockdown of Cdc25A inhibited virus-induced DNA damage in highly sensitive cells and blocked the effects of Chk1 inhibition in resistant cells. Finally, inhibition of Chk1 decreased homologous recombination repair of virus-induced genomic DNA double-strand breaks. Thus, virus-induced host cell DNA damage signaling and repair are key determinants of oncolytic adenoviral activity, and promoting unscheduled DNA synthesis and/or impeding homologous recombination repair could potentiate the effects of oncolytic adenoviruses in the treatment of ovarian cancer
    corecore