18 research outputs found
Mutations in alpha-B-crystallin cause autosomal dominant axonal Charcot–Marie–Tooth disease with congenital cataracts
Background and purpose:
Mutations in the alpha-B-crystallin (CRYAB) gene have initially been associated with myofibrillar myopathy, dilated cardiomyopathy and cataracts. For the first time, peripheral neuropathy is reported here as a novel phenotype associated with CRYAB.
//
Methods:
Whole-exome sequencing was performed in two unrelated families with genetically unsolved axonal Charcot–Marie–Tooth disease (CMT2), assessing clinical, neurophysiological and radiological features.
//
Results:
The pathogenic CRYAB variant c.358A>G;p.Arg120Gly was segregated in all affected patients from two unrelated families. The disease presented as late onset CMT2 (onset over 40 years) with distal sensory and motor impairment and congenital cataracts. Muscle involvement was probably associated in cases showing mild axial and diaphragmatic weakness. In all cases, nerve conduction studies demonstrated the presence of an axonal sensorimotor neuropathy along with chronic neurogenic changes on needle examination.
//
Discussion:
In cases with late onset autosomal dominant CMT2 and congenital cataracts, it is recommended that CRYAB is considered for genetic testing. The identification of CRYAB mutations causing CMT2 further supports a continuous spectrum of expressivity, from myopathic to neuropathic and mixed forms, of a growing number of genes involved in protein degradation and chaperone-assisted autophagy
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
Rapid progression of late onset axonal Charcot–Marie–Tooth disease associated with a novel MPZ mutation in the extracellular domain
Myelin protein zero (MPZ) is a major component of compact myelin in peripheral nerves where it plays an essential role in myelin formation and adhesion. MPZ gene mutations are usually responsible for demyelinating neuropathies, namely Charcot–Marie–Tooth (CMT) type 1B, Déjèrine–Sottas neuropathy and congenital hypomyelinating neuropathy. Less frequently, axonal CMT (CMT2) associated with MPZ mutations has been described. We report six patients (one sporadic case and five subjects from two apparently unrelated families) with a late onset, but rapidly progressive, axonal peripheral neuropathy. In all patients, molecular analysis demonstrated a novel heterozygous missense mutation (208C>T) in MPZ exon 2, causing the Pro70Ser substitution in the extracellular domain. The diagnosis of CMT2 associated with MPZ mutations should be considered in both sporadic and familial cases of late onset, progressive polyneuropathy. The mechanism whereby compact myelin protein mutations cause axonal neuropathy remains to be elucidated
Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2
OBJECTIVE: To describe the clinical and neurophysiologic phenotype of a family with hereditary sensory and autonomic neuropathy type 1 (HSANI) due to a novel mutation in SPTLC2 and to characterize the biochemical properties of this mutation.
METHODS: We screened 107 patients with HSAN who were negative for other genetic causes for mutations in SPTLC2. The biochemical properties of a new mutation were characterized in cell-free and cell-based activity assays.
RESULTS: A novel mutation (A182P) was found in 2 subjects of a single family. The phenotype of the 2 subjects was an ulcero-mutilating sensory-predominant neuropathy as described previously for patients with HSANI, but with prominent motor involvement and earlier disease onset in the first decade of life. Affected patients had elevated levels of plasma 1-deoxysphingolipids (1-deoxySLs). Biochemically, the A182P mutation was associated with a reduced canonical activity but an increased alternative activity with alanine, which results in largely increased 1-deoxySL levels, supporting their pathogenicity.
CONCLUSION: This study confirms that mutations in SPTLC2 are associated with increased deoxySL formation causing HSANI
SIGMAR1
OBJECTIVE: To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor–1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. METHODS: We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. RESULTS: In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. CONCLUSIONS: We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies
Mutations in alpha‐B‐crystallin cause autosomal dominant axonal Charcot–Marie–Tooth disease with congenital cataracts
Abstract Background and purpose Mutations in the alpha‐B‐crystallin ( CRYAB ) gene have initially been associated with myofibrillar myopathy, dilated cardiomyopathy and cataracts. For the first time, peripheral neuropathy is reported here as a novel phenotype associated with CRYAB. Methods Whole‐exome sequencing was performed in two unrelated families with genetically unsolved axonal Charcot–Marie–Tooth disease (CMT2), assessing clinical, neurophysiological and radiological features. Results The pathogenic CRYAB variant c.358A>G;p.Arg120Gly was segregated in all affected patients from two unrelated families. The disease presented as late onset CMT2 (onset over 40 years) with distal sensory and motor impairment and congenital cataracts. Muscle involvement was probably associated in cases showing mild axial and diaphragmatic weakness. In all cases, nerve conduction studies demonstrated the presence of an axonal sensorimotor neuropathy along with chronic neurogenic changes on needle examination. Discussion In cases with late onset autosomal dominant CMT2 and congenital cataracts, it is recommended that CRYAB is considered for genetic testing. The identification of CRYAB mutations causing CMT2 further supports a continuous spectrum of expressivity, from myopathic to neuropathic and mixed forms, of a growing number of genes involved in protein degradation and chaperone‐assisted autophagy
Genetic and clinical characteristics of NEFL -related Charcot-Marie-Tooth disease
To analyse and describe the clinical and genetic spectrum of Charcot-Marie-Tooth disease (CMT) caused by mutations in the neurofilament light polypeptide gene (
).
Combined analysis of newly identified patients with
-related CMT and all previously reported cases from the literature.
Five new unrelated patients with CMT carrying the
mutations P8R and N98S and the novel variant L311P were identified. Combined data from these cases and 62 kindreds from the literature revealed four common mutations (P8R, P22S, N98S and E396K) and three mutational hotspots accounting for 37 (55%) and 50 (75%) kindreds, respectively. Eight patients had de novo mutations. Loss of large-myelinated fibres was a uniform feature in a total of 21 sural nerve biopsies and 'onion bulb' formations and/or thin myelin sheaths were observed in 14 (67%) of them. The neurophysiological phenotype was broad but most patients with E90K and N98S had upper limb motor conduction velocities <38 m/s. Age of onset was ≤3 years in 25 cases. Pyramidal tract signs were described in 13 patients and 7 patients were initially diagnosed with or tested for inherited ataxia. Patients with E90K and N98S frequently presented before age 3 years and developed hearing loss or other neurological features including ataxia and/or cerebellar atrophy on brain MRI.
-related CMT is clinically and genetically heterogeneous. Based on this study, however, we propose mutational hotspots and relevant clinical-genetic associations that may be helpful in the evaluation of
sequence variants and the differential diagnosis with other forms of CMT
Selected items from the Charcot-Marie-Tooth (CMT) Neuropathy Score and secondary clinical outcome measures serve as sensitive clinical markers of disease severity in CMT1A patients
This study evaluates primary and secondary clinical outcome measures in Charcot-Marie-Tooth disease type 1A (CMT1A) with regard to their contribution towards discrimination of disease severity. The nine components of the composite Charcot-Marie-Tooth disease Neuropathy Score and six additional secondary clinical outcome measures were assessed in 479 adult patients with genetically proven CMT1A and 126 healthy controls. Using hierarchical clustering, we identified four significant clusters of patients according to clinical severity. We then tested the impact of each of the CMTNS components and of the secondary clinical parameters with regard to their power to differentiate these four clusters. The CMTNS components ulnar sensory nerve action potential (SNAP), pin sensibility, vibration and strength of arms did not increase the discriminant value of the remaining five CMTNS components (Ulnar compound motor action potential [CMAP], leg motor symptoms, arm motor symptoms, leg strength and sensory symptoms). However, three of the six additional clinical outcome measures - the 10m-timed walking test (T10MW), 9 hole-peg test (9HPT), and foot dorsal flexion dynamometry - further improved discrimination between severely and mildly affected patients. From these findings, we identified three different composite measures as score hypotheses and compared their discriminant power with that of the CMTNS. A composite of eight components CMAP, Motor symptoms legs, Motor symptoms arms, Strength of Legs, Sensory symptoms), displayed the strongest power to discriminate between the clusters. As a conclusion, five items from the CMTNS and three secondary clinical outcome measures improve the clinical assessment of patients with CMT1A significantly and are beneficial for upcoming clinical and therapeutic trials