81 research outputs found

    Definitions and methods of measuring and reporting on injurious falls in randomised controlled fall prevention trials: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standardisation of the assessment methodology and case definition represents a major precondition for the comparison of study results and the conduction of meta-analyses. International guidelines provide recommendations for the standardisation of falls methodology; however, injurious falls have not been targeted. The aim of the present article was to review systematically the range of case definitions and methods used to measure and report on injurious falls in randomised controlled trials (RCTs) on fall prevention.</p> <p>Methods</p> <p>An electronic literature search of selected comprehensive databases was performed to identify injurious falls definitions in published trials. Inclusion criteria were: RCTs on falls prevention published in English, study population ≥ 65 years, definition of injurious falls as a study endpoint by using the terms "injuries" and "falls".</p> <p>Results</p> <p>The search yielded 2089 articles, 2048 were excluded according to defined inclusion criteria. Forty-one articles were included. The systematic analysis of the methodology applied in RCTs disclosed substantial variations in the definition and methods used to measure and document injurious falls. The limited standardisation hampered comparability of study results. Our results also highlight that studies which used a similar, standardised definition of injurious falls showed comparable outcomes.</p> <p>Conclusions</p> <p>No standard for defining, measuring, and documenting injurious falls could be identified among published RCTs. A standardised injurious falls definition enhances the comparability of study results as demonstrated by a subgroup of RCTs used a similar definition. Recommendations for standardising the methodology are given in the present review.</p

    A ‘Dutch’ Ballot? The EP in the Netherlands

    No full text

    Impact of labile and recalcitrant carbon treatments on available nitrogen and plant communities in a semiarid ecosystem

    Get PDF
    Includes bibliographical references (pages 544-545).In a 10-year study, we assessed the influence of five carbon (C) treatments on the labile C and nitrogen (N) pools of historically N-enriched plots on the Shortgrass Steppe Long Term Ecological Research site located in northeastern Colorado. For eight years, we applied sawdust, sugar, industrial lignin, sawdust + sugar, and lignin + sugar to plots that had received N and water additions in the early 1970s. Previous work showed that past water and N additions altered plant species composition and enhanced rates of nutrient cycling; these effects were still apparent 25 years later. We hypothesized that labile C amendments would stimulate microbial activity and suppress rates of N mineralization, whereas complex forms of carbon (sawdust and lignin) could enhance humification and lead to longer-term reductions in N availability. Results indicated that, of the five carbon treatments, sugar, sawdust, and sawdust + sugar suppressed N availability, with sawdust + sugar being the most effective treatment to reduce N availability. The year after treatments stopped, N availability remained less in the sawdust + sugar treatment plots than in the high-N control plots. Three years after treatments ended, reductions in N availability were smaller (40–60%). Our results suggest that highly labile forms of carbon generate strong short-term N sinks, but these effects dissipate within one year of application, and that more recalcitrant forms reduce N longer. Sawdust + sugar was the most effective treatment to decrease exotic species canopy cover and increase native species density over the long term. Labile carbon had neither short- nor long-term effects on exotic species. Even though the organic amendments did not contribute to recovery of the dominant native species Bouteloua gracilis, they were effective in increasing another native species, Carex eleocharis. These results indicate that organic amendments may be a useful tool for restoring some native species in the shortgrass steppe, though not all

    Simulation of regeneration of big sagebrush supports predicted changes in habitat suitability at the trailing and leading edges of distribution shifts

    No full text
    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably Greater Sage-Grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. The leading and trailing edges of potential climate-driven distribution shifts are likely to be areas most sensitive to climate change. Although several processes contribute to distribution shifts, regeneration is a fundamental requirement, especially for species with episodic regeneration patterns, such as big sagebrush. We used a process-based regeneration model for big sagebrush to simulate potential germination and seedling survival in response to climatic and edaphic conditions. We estimated current and future regeneration under 2070–2099 CMIP5 climate conditions at trailing and leading edges that were previously identified using traditional species distribution models. Our results supported expectations of increased probability of regeneration at the leading edge and decreased probability at the trailing edge compared to current levels. Our simulations indicated that soil water dynamics at the leading edge will become more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush. At the trailing edge, increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. We observed reliable changes in areas identified as trailing and leading edges, consistent with previous predictions. However, we also identified potential local refugia within the trailing edge, mostly at higher elevation sites. Decreasing regeneration probability at the trailing edge suggests that it will be difficult to preserve and/or restore big sagebrush in these areas. Conversely, increasing regeneration probability at the leading edge suggests a growing potential for conflicts in management goals between maintaining existing grasslands and croplands by preventing sagebrush expansion versus accepting a shift in plant community composition to sagebrush dominance
    corecore