590 research outputs found

    Brownie, a Gene Involved in Building Complex Respiratory Devices in Insect Eggshells

    Get PDF
    Background: Insect eggshells must combine protection for the yolk and embryo with provisions for respiration and for the entry of sperm, which are ensured by aeropyles and micropyles, respectively. Insects which oviposit the eggs in an egg-case have a double problem of respiration as gas exchange then involves two barriers. An example of this situation is found in the cockroach Blattella germanica, where the aeropyle and the micropyle are combined in a complex structure called the sponge-like body. The sponge-like body has been well described morphologically, but nothing is known about how it is built up. Methodology/Principal Findings: In a library designed to find genes expressed during late chorion formation in B. germanica, we isolated the novel sequence Bg30009 (now called Brownie), which was outstanding due to its high copy number. In the present work, we show that Brownie is expressed in the follicle cells localized in the anterior pole of the oocyte in late choriogenesis. RNA interference (RNAi) of Brownie impaired correct formation of the sponge-like body and, as a result, the egg-case was also ill-formed and the eggs were not viable. Conclusions/Significance: Results indicate that the novel gene Brownie plays a pivotal role in building up the sponge-lik

    NR3E receptors in cnidarians : a new family of steroid receptor relatives extends the possible mechanisms for ligand binding

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Journal of Steroid Biochemistry and Molecular Biology 184 (2018): 11-19, doi:10.1016/j.jsbmb.2018.06.014.Steroid hormone receptors are important regulators of development and physiology in bilaterian animals, but the role of steroid signaling in cnidarians has been contentious. Cnidarians produce steroids, including A-ring aromatic steroids with a side-chain, but these are probably made through pathways different than the one used by vertebrates to make their A-ring aromatic steroids. Here we present comparative genomic analyses indicating the presence of a previously undescribed nuclear receptor family within medusozoan cnidarians, that we propose to call NR3E. This family predates the diversification of ERR/ER/SR in bilaterians, indicating that the first NR3 evolved in the common ancestor of the placozoan and cnidarian-bilaterian with lineage-specific loss in the anthozoans, even though multiple species in this lineage have been shown to produce aromatic steroids, whose function remain unclear. We discovered serendipitously that a cytoplasmic factor within epidermal cells of transgenic Hydra vulgaris can trigger the nuclear translocation of heterologously expressed human ERα. This led us to hypothesize that aromatic steroids may also be present in the medusozoan cnidarian lineage, which includes Hydra, and may explain the translocation of human ERα. Docking experiments with paraestrol A, a cnidarian A-ring aromatic steroid, into the ligand-binding pocket of Hydra NR3E indicates that, if an aromatic steroid is indeed the true ligand, which remains to be demonstrated, it would bind to the pocket through a partially distinct mechanism from the manner in which estradiol binds to vertebrate ER.KK is supported by grant from Japan Society for the Promotion of Science (JSPS 17K07420). I.M.L.B and Y.C. acknowledge the support and the use of resources of the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INBS-05 and of Instruct-ERIC. AMR was supported by NIH Award R15GM114740. AMT was supported by an Internal Research and Development Award from the Woods Hole Oceanographic Institution

    Prospective Patterns and Correlates of Quality of Life among Women in Substance Abuse Treatment

    Get PDF
    Background Quality of life (QOL) is increasingly recognized as central to the broad construct of recovery in sub- stance abuse services. QOL measures can supplement more objective symptom measures, identify specific service needs and document changes in functioning that are associated with substance use patterns. To date however, QOL remains an under investigated area in the addictions field, especially in the United States. Methods This study examines patterns and predictors of QOL at 1 and 6 months post treatment intake among 240 women enrolled in substance abuse treatment in Cleveland, Ohio. The World Health Organization Quality of Life (WHOQOL-BREF) measure was used to assess physical, psychological, social and environmental domains. Hierarchical multiple regressions were conducted to identify correlates of QOL at 6 months post treatment intake. Results All QOL domains across the follow up time points improved significantly. However, QOL scores across domains remained below those of healthy population norms. Trauma symptoms significantly predicted Phys- ical and Psychological QOL. Among treatment process variables, alcohol use was the sole significant factor associ- ated with QOL and only for Environmental QOL. Recovery support and friends support for abstinence were consist- ently associated with QOL across all four domains. Implications This study suggests the usefulness of the WHOQOL measure as an indicator of functioning in sub- stance abusing populations. Findings underline the importance of helping women deal with trauma symptoms and develop support for recovery. Further research is needed on the longitudinal relationship between QOL and sub- stance use patterns

    A Live Zebrafish-Based Screening System for Human Nuclear Receptor Ligand and Cofactor Discovery

    Get PDF
    Nuclear receptors (NRs) belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio). The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1) respond as expected to endogenous zebrafish hormones and cofactors, 2) facilitate efficient receptor and cofactor purification, 3) respond robustly to NR hormones and drugs and 4) yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors

    Reconstructing ‘the Alcoholic’: Recovering from Alcohol Addiction and the Stigma this Entails

    Get PDF
    Public perception of alcohol addiction is frequently negative, whilst an important part of recovery is the construction of a positive sense of self. In order to explore how this might be achieved, we investigated how those who self-identify as in recovery from alcohol problems view themselves and their difficulties with alcohol and how they make sense of others’ responses to their addiction. Semi-structured interviews with six individuals who had been in recovery between 5 and 35 years and in contact with Alcoholics Anonymous were analysed using Interpretative Phenomenological Analysis. The participants were acutely aware of stigmatising images of ‘alcoholics’ and described having struggled with a considerable dilemma in accepting this identity themselves. However, to some extent they were able to resist stigma by conceiving of an ‘aware alcoholic self’ which was divorced from their previously unaware self and formed the basis for a new more knowing and valued identity

    Identification of an Endogenous Ligand Bound to a Native Orphan Nuclear Receptor

    Get PDF
    Orphan nuclear receptors have been instrumental in identifying novel signaling pathways and therapeutic targets. However, identification of ligands for these receptors has often been based on random compound screens or other biased approaches. As a result, it remains unclear in many cases if the reported ligands are the true endogenous ligands, – i.e., the ligand that is bound to the receptor in an unperturbed in vivo setting. Technical limitations have limited our ability to identify ligands based on this rigorous definition. The orphan receptor hepatocyte nuclear factor 4 α (HNF4α) is a key regulator of many metabolic pathways and linked to several diseases including diabetes, atherosclerosis, hemophilia and cancer. Here we utilize an affinity isolation/mass-spectrometry (AIMS) approach to demonstrate that HNF4α is selectively occupied by linoleic acid (LA, C18:2ω6) in mammalian cells and in the liver of fed mice. Receptor occupancy is dramatically reduced in the fasted state and in a receptor carrying a mutation derived from patients with Maturity Onset Diabetes of the Young 1 (MODY1). Interestingly, however, ligand occupancy does not appear to have a significant effect on HNF4α transcriptional activity, as evidenced by genome-wide expression profiling in cells derived from human colon. We also use AIMS to show that LA binding is reversible in intact cells, indicating that HNF4α could be a viable drug target. This study establishes a general method to identify true endogenous ligands for nuclear receptors (and other lipid binding proteins), independent of transcriptional function, and to track in vivo receptor occupancy under physiologically relevant conditions

    Anemone bleaching impacts the larval recruitment success of an anemone-associated fish

    Get PDF
    In marine environments, mutualisms such as those between corals or sea anemones and their algal symbionts (Symbiodiniaceae) play a key role for supporting surrounding biodiversity. However, as the breakdown of the mutualism between corals and/or anemones and Symbiodiniaceae (i.e. bleaching) become increasingly frequent and severe, the risk of losing the additional species that rely on them may also increase. While the effects of anemone bleaching on the biology and ecology of anemone-associated fishes have been the subject of recent research, relatively little is known about the impacts that anemone bleaching might have on the recruitment of larval fish. Here, we report that climate change-induced anemone bleaching impairs a secondary mutualism between anemones and an anemone-associated fish species, the threespot dascyllus (Dascyllus trimaculatus). Field-based monitoring over a 1-year period showed anemones that bleached experienced decreased recruitment of larval D. trimaculatus compared to those that did not bleach, with abundances of newly settled D. trimaculatus three times lower in bleached versus unbleached anemones. A visual choice experiment showed that this pattern is associated with fish being less attracted to bleached anemones, and a predation experiment demonstrated that fish associated with bleached anemones experienced higher mortality compared to those associated with unbleached anemones. These results suggests that the decreased recruitment of D. trimaculatus observed in bleached anemones may be driven by hampered pre-settlement (habitat selection) and post-settlement (survival to predation) processes for larval D. trimaculatus in bleached hosts. This study highlights the risk of cascading mutualism breakdowns in coral reefs as conditions deteriorate and stresses the importance of protecting these mutualisms for the maintenance of coral reef biodiversity
    corecore