61 research outputs found

    The hypoxia sensitive metal transcription factor MTF-1 activates NCX1 brain promoter and participates in remote postconditioning neuroprotection in stroke

    Get PDF
    Remote limb ischemic postconditioning (RLIP) is an experimental strategy in which short femoral artery ischemia reduces brain damage induced by a previous harmful ischemic insult. Ionic homeostasis maintenance in the CNS seems to play a relevant role in mediating RLIP neuroprotection and among the effectors, the sodium-calcium exchanger 1 (NCX1) may give an important contribution, being expressed in all CNS cells involved in brain ischemic pathophysiology. The aim of this work was to investigate whether the metal responsive transcription factor 1 (MTF-1), an important hypoxia sensitive transcription factor, may (i) interact and regulate NCX1, and (ii) play a role in the neuroprotective effect mediated by RLIP through NCX1 activation. Here we demonstrated that in brain ischemia induced by transient middle cerebral occlusion (tMCAO), MTF-1 is triggered by a subsequent temporary femoral artery occlusion (FAO) and represents a mediator of endogenous neuroprotection. More importantly, we showed that MTF-1 translocates to the nucleus where it binds the metal responsive element (MRE) located at −23/−17 bp of Ncx1 brain promoter thus activating its transcription and inducing an upregulation of NCX1 that has been demonstrated to be neuroprotective. Furthermore, RLIP restored MTF-1 and NCX1 protein levels in the ischemic rat brain cortex and the silencing of MTF-1 prevented the increase of NCX1 observed in RLIP protected rats, thus demonstrating a direct regulation of NCX1 by MTF-1 in the ischemic cortex of rat exposed to tMCAO followed by FAO. Moreover, silencing of MTF-1 significantly reduced the neuroprotective effect elicited by RLIP as demonstrated by the enlargement of brain infarct volume observed in rats subjected to RLIP and treated with MTF-1 silencing. Overall, MTF-dependent activation of NCX1 and their upregulation elicited by RLIP, besides unraveling a new molecular pathway of neuroprotection during brain ischemia, might represent an additional mechanism to intervene in stroke pathophysiology

    sodium calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance

    Get PDF
    Abstract The ischemic tolerance (IT) paradigm represents a fundamental cell response to certain types or injury able to render an organ more "tolerant" to a subsequent, stronger, insult. During the 16th century, the toxicologist Paracelsus described for the first time the possibility that a noxious event might determine a state of tolerance. This finding was summarized in one of his most important mentions: "The dose makes the poison". In more recent years, ischemic tolerance in the brain was first described in 1991, when it was demonstrated by Kirino and collaborators that two minutes of subthreshold brain ischemia in gerbils produced tolerance against global brain ischemia. Based on the time in which the conditioning stimulus is applied, it is possible to define preconditioning, perconditioning and postconditioning, when the subthreshold insult is applied before, during or after the ischemic event, respectively. Furthermore, depending on the temporal delay from the ischemic event, two different modalities are distinguished: rapid or delayed preconditioning and postconditioning. Finally, the circumstance in which the conditioning stimulus is applied on an organ distant from the brain is referred as remote conditioning. Over the years the "conditioning" paradigm has been applied to several brain disorders and a number of molecular mechanisms taking part to these protective processes have been described. The mechanisms are usually classified in three distinct categories identified as triggers, mediators and effectors. As concerns the putative effectors, it has been hypothesized that brain cells appear to have the ability to adapt to hypoxia by reducing their energy demand through modulation of ion channels and transporters, which delays anoxic depolarization. The purpose of the present review is to summarize the role played by plasmamembrane proteins able to control ionic homeostasis in mediating protection elicited by brain conditioning, particular attention will be deserved to the role played by Na+/Ca2+ exchanger

    Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death.

    Get PDF
    Phthalates, phthalic acid esters, are widely used as plasticizers to produce polymeric materials in industrial production of plastics and daily consumable products. Animal studies have shown that di(2-ethylhexyl)phthalate (DEHP) may cause toxic effects in the rat brain. In the present study, chronic exposure to DEHP (0.1–100 μM) caused dose-dependent cell death via the activation of caspase-3 in neuroblastoma cells. Intriguingly, this harmful effect was prevented by the pan-histone deacetylase (HDAC) inhibitor trichostatin A, by the class II HDAC inhibitor MC-1568, but not by the class I HDAC inhibitor MS-275. Furthermore, DEHP reduced specificity protein 3 (Sp3) gene expression, but not Sp3 mRNA, after 24 and 48 h exposures. However, Sp3 protein reduction was prevented by pre-treatment with MC-1568, suggesting the involvement of class II HDACs in causing this effect. Then, we investigated the possible relationship between DEHP-induced neuronal death and the post-translational mechanisms responsible for the down-regulation of Sp3. Interestingly, DEHP-induced Sp3 reduction was associated to its deacetylation and polyubiquitination. Co-immunoprecipitation studies showed that Sp3 physically interacted with HDAC4 after DEHP exposure, while HDAC4 inhibition by antisense oligodeoxynucleotide reverted the DEHP-induced degradation of Sp3. Notably, Sp3 overexpression was able to counteract the detrimental effect induced by DEHP. Taken together, these results suggest that DEHP exerts its toxic effect by inducing deacetylation of Sp3 via HDAC4, and afterwards, Sp3-polyubiquitination

    miR135a administration ameliorates brain ischemic damage by preventing TRPM7 activation during brain ischemia

    Get PDF
    Background: miRNA-based strategies have recently emerged as a promising therapeutic approach in several neurodegenerative diseases. Unregulated cation influx is implicated in several cellular mechanisms underlying neural cell death during ischemia. The brain constitutively active isoform of transient receptor potential melastatin 7 (TRPM7) represents a glutamate excitotoxicity-independent pathway that significantly contributes to the pathological Ca2+ overload during ischemia. Aims: In the light of these premises, inhibition of TRPM7 may be a reasonable strategy to reduce ischemic injury. Since TRPM7 is a putative target of miRNA135a, the aim of the present paper was to evaluate the role played by miRNA135a in cerebral ischemia. Therefore, the specific objectives of the present paper were: (1) to evaluate miR135a expression in temporoparietal cortex of ischemic rats; (2) to investigate the effect of the intracerebroventricular (icv) infusion of miR135a on ischemic damage and neurological functions; and (3) to verify whether miR135a effects may be mediated by an alteration of TRPM7 expression. Methods: miR135a expression was evaluated by RT- PCR and FISH assay in temporoparietal cortex of ischemic rats. Ischemic volume and neurological functions were determined in rats subjected to transient middle cerebral artery occlusion (tMCAo) after miR135a intracerebroventricular perfusion. Target analysis was performed by Western blot. Results: Our results demonstrated that, in brain cortex, 72 h after ischemia, miR135a expression increased, while TRPM7 expression was parallelly downregulated. Interestingly, miR135a icv perfusion strongly ameliorated the ischemic damage and improved neurological functions, and downregulated TRPM7 protein levels. Conclusions: The early prevention of TRPM7 activation is protective during brain ischemia

    Prolonged NCX activation prevents SOD1 accumulation, reduces neuroinflammation, ameliorates motor behavior and prolongs survival in a ALS mouse model

    Get PDF
    Imbalance in cellular ionic homeostasis is a hallmark of several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Sodium-calcium exchanger (NCX) is a membrane antiporter that, operating in a bidirectional way, couples the exchange of Ca2+ and Na + ions in neurons and glial cells, thus controlling the intracellular homeostasis of these ions. Among the three NCX genes, NCX1 and NCX2 are widely expressed within the CNS, while NCX3 is present only in skeletal muscles and at lower levels of expression in selected brain regions. ALS mice showed a reduction in the expression and activity of NCX1 and NCX2 consistent with disease progression, therefore we aimed to investigate their role in ALS pathophysiology. Notably, we demonstrated that the pharmacological activation of NCX1 and NCX2 by the prolonged treatment of SOD1G93A mice with the newly synthesized compound neurounina: (1) prevented the reduction in NCX activity observed in spinal cord; (2) preserved motor neurons survival in the ventral spinal horn of SOD1G93A mice; (3) prevented the spinal cord accumulation of misfolded SOD1; (4) reduced astroglia and microglia activation and spared the resident microglia cells in the spinal cord; (5) improved the lifespan and mitigated motor symptoms of ALS mice. The present study highlights the significant role of NCX1 and NCX2 in the pathophysiology of this neurodegenerative disorder and paves the way for the design of a new pharmacological approach for ALS

    A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy

    Get PDF
    OBJECTIVE: Heterozygous variants in KCNQ2 or, more rarely, KCNQ3 genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in KCNQ2 or KCNQ3 have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in KCNQ2 or KCNQ3 occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new KCNQ3 variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability. METHODS: Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits. RESULTS: A novel single-base duplication in exon 12 of KCNQ3 (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits. SIGNIFICANCE: The present results indicate that a homozygous KCNQ3 loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between KCNQ2- and KCNQ3-related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities

    Military business and the business of the military

    Get PDF
    Contrary to dominant approaches that locate the causes for military entrepreneurialism in eastern Democratic Republic of the Congo predominantly in criminal military elites, this article highlights the importance of the Congolese military’s (FARDC) civilian context for understanding military revenue-generation. It analyses how the latter is shaped by structures of domination, signification and legitimisation that drive and are driven by the FARDC’s governance, private protection and security practices. It argues that these practices contribute to bestowing a degree of legitimacy on both the FARDC’s position of power and some of its revenue-generation activities. Furthermore, by emphasising that the FARDC’s regulatory and protection practices are partly the product of popular demands and the routine actions of civilians, the article contends that the causes of military revenue-generation are co-located in the military’s civilian environment. In this manner, it offers a more nuanced conceptualisation of military entrepreneurialism, thus opening up new perspectives on policy interventions in this area

    Obelix vs. Asterix : size of US commercial banks and its regulatory challenge

    Get PDF
    Big banks pose substantial costs to society in the form of increased systemic risk and government bailouts during crises. So the question is: Should regulators limit the size of banks? To answer this question, regulators need to assess the potential costs of such regulations. If big banks enjoy substantial scale economies (i.e., average costs get lower as bank size increases), limiting the size of banks through regulations may be inefficient and likely to reduce social welfare. However, the literature offers conflicting results regarding the existence of economies of scale for the biggest US banks. We contribute to this literature using a novel approach to estimating nonparametric measures of scale economies and total factor productivity (TFP) growth. For US commercial banks, we find that around 73 % of the top one hundred banks, 98 % of medium and small banks, and seven of the top ten biggest banks by asset size exhibit substantial economies of scale. Likewise, we find that scale economies contribute positively and significantly to their TFP growth. The existence of substantial scale economies raises an important challenge for regulators to pursue size limit regulations
    • …
    corecore