138 research outputs found

    Acute inhalation of hypertonic saline does not improve mucociliary clearance in all children with cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known of how mucociliary clearance (MCC) in children with cystic fibrosis (CF) and normal pulmonary function compares with healthy adults, or how an acute inhalation of 7% hypertonic saline (HS) aerosol affects MCC in these same children.</p> <p>Methods</p> <p>We compared MCC in 12 children with CF and normal pulmonary function after an acute inhalation of 0.12% saline (placebo), or HS, admixed with the radioisotope <sup>99 m</sup>technetium sulfur colloid in a double-blind, randomized, cross-over study. Mucociliary clearance on the placebo day in the children was also compared to MCC in 10 healthy, non-CF adults. Mucociliary clearance was quantified over a 90 min period, using gamma scintigraphy, and is reported as MCC at 60 min (MCC60) and 90 min (MCC90).</p> <p>Results</p> <p>Median [interquartile range] MCC60 and MCC90 in the children on the placebo visit were 15.4 [12.4-24.5]% and 19.3 [17.3-27.8%]%, respectively, which were similar to the adults with 17.8 [6.4-28.7]% and 29.6 [16.1-43.5]%, respectively. There was no significant improvement in MCC60 (2.2 [-6.2-11.8]%) or MCC90 (2.3 [-1.2-10.5]%) with HS, compared to placebo. In addition, 5/12 and 4/12 of the children showed a decrease in MCC60 and MCC90, respectively, after inhalation of HS. A <it>post hoc </it>subgroup analysis of the change in MCC90 after HS showed a significantly greater improvement in MCC in children with lower placebo MCC90 compared to those with higher placebo MCC90 (p = 0.045).</p> <p>Conclusions</p> <p>These data suggest that percent MCC varies significantly between children with CF lung disease and normal pulmonary functions, with some children demonstrating MCC values within the normal range and others showing MCC values that are below normal values. In addition, although MCC did not improve in all children after inhalation of HS, improvement did occur in children with relatively low MCC values after placebo. This finding suggests that acute inhalation of hypertonic saline may benefit a subset of children with low MCC values.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01293084">NCT01293084</a></p

    Inhalation characteristics of asthma patients, COPD patients and healthy volunteers with the Spiromax® and Turbuhaler® devices: a randomised, cross-over study.

    Get PDF
    BACKGROUND: Spiromax® is a novel dry-powder inhaler containing formulations of budesonide plus formoterol (BF). The device is intended to provide dose equivalence with enhanced user-friendliness compared to BF Turbuhaler® in asthma and chronic obstructive pulmonary disease (COPD). The present study was performed to compare inhalation parameters with empty versions of the two devices, and to investigate the effects of enhanced training designed to encourage faster inhalation. METHODS: This randomised, open-label, cross-over study included children with asthma (n = 23), adolescents with asthma (n = 27), adults with asthma (n = 50), adults with COPD (n = 50) and healthy adult volunteers (n = 50). Inhalation manoeuvres were recorded with each device after training with the patient information leaflet (PIL) and after enhanced training using an In-Check Dial device. RESULTS: After PIL training, peak inspiratory flow (PIF), maximum change in pressure (∆P) and the inhalation volume (IV) were significantly higher with Spiromax than with the Turbuhaler device (p values were at least &lt;0.05 in all patient groups). After enhanced training, numerically or significantly higher values for PIF, ∆P, IV and acceleration remained with Spiromax versus Turbuhaler, except for ∆P in COPD patients. After PIL training, one adult asthma patient and one COPD patient inhaled &lt;30 L/min through the Spiromax compared to one adult asthma patient and five COPD patients with the Turbuhaler. All patients achieved PIF values of at least 30 L/min after enhanced training. CONCLUSIONS: The two inhalers have similar resistance so inhalation flows and pressure changes would be expected to be similar. The higher flow-related values noted for Spiromax versus Turbuhaler after PIL training suggest that Spiromax might have human factor advantages in real-world use. After enhanced training, the flow-related differences between devices persisted; increased flow rates were achieved with both devices, and all patients achieved the minimal flow required for adequate drug delivery. Enhanced training could be useful, especially in COPD patients

    Comparison of serious inhaler technique errors made by device-naïve patients using three different dry powder inhalers: a randomised, crossover, open-label study

    Get PDF
    Background: Serious inhaler technique errors can impair drug delivery to the lungs. This randomised, crossover, open-label study evaluated the proportion of patients making predefined serious errors with Pulmojet compared with Diskus and Turbohaler dry powder inhalers. Methods: Patients ≥18 years old with asthma and/or COPD who were current users of an inhaler but naïve to the study devices were assigned to inhaler technique assessment on Pulmojet and either Diskus or Turbohaler in a randomised order. Patients inhaled through empty devices after reading the patient information leaflet. If serious errors potentially affecting dose delivery were recorded, they repeated the inhalations after watching a training video. Inhaler technique was assessed by a trained nurse observer and an electronic inhalation profile recorder. Results: Baseline patient characteristics were similar between randomisation arms for the Pulmojet-Diskus (n = 277) and Pulmojet-Turbohaler (n = 144) comparisons. Non-inferiority in the proportions of patients recording no nurse-observed serious errors was demonstrated for both Pulmojet versus Diskus, and Pulmojet versus Turbohaler; therefore, superiority was tested. Patients were significantly less likely to make ≥1 nurse-observed serious errors using Pulmojet compared with Diskus (odds ratio, 0.31; 95 % CI, 0.19–0.51) or Pulmojet compared with Turbohaler (0.23; 0.12–0.44) after reading the patient information leaflet with additional video instruction, if required. Conclusions These results suggest Pulmojet is easier to learn to use correctly than the Turbohaler or Diskus for current inhaler users switching to a new dry powder inhaler

    Study of the Emitted Dose After Two Separate Inhalations at Different Inhalation Flow Rates and Volumes and an Assessment of Aerodynamic Characteristics of Indacaterol Onbrez Breezhaler® 150 and 300 μg

    Get PDF
    Onbrez Breezhaler® is a low-resistance capsule-based device that was developed to deliver indacaterol maleate. The study was designed to investigate the effects of both maximum flow rate (MIF) and inhalation volume (Vin) on the dose emission of indacaterol 150 and 300 μg dose strengths after one and two inhalations using dose unit sampling apparatus (DUSA) as well as to study the aerodynamic characteristics of indacaterol Breezhaler® using the Andersen cascade impactor (ACI) at a different set of MIF and Vin. Indacaterol 150 and 300 μg contain equal amounts of lactose per carrier. However, 150 μg has the smallest carrier size. The particle size distribution (PSD) of indacaterol DPI formulations 150 and 300 μg showed that the density of fine particles increased with the increase of the primary pressure. For both strengths (150 μg and 300 μg), ED1 increased and ED2 decreased when the inhalation flow rate and inhaled volume increased. The reduction in ED1 and subsequent increase in ED2 was such that when the Vin is greater than 1 L, then 60 L/min could be regarded as the minimum MIF. The Breezhaler was effective in producing respirable particles with an MMAD ≤5 μm irrespective of the inhalation flow rate, but the mass fraction of particles with an aerodynamic diameter <3 μm is more pronounced between 60 and 90 L/min. The dose emission of indacaterol was comparable for both dose strengths 150 and 300 μg. These in vitro results suggest that a minimum MIF of 60 L/min is required during routine use of Onbrez Breezhaler®, and confirm the good practice to make two separate inhalations from the same dose

    Metabolic Effects Associated with ICS in Patients with COPD and Comorbid Type 2 Diabetes: A Historical Matched Cohort Study

    Get PDF
    Background Management guidelines for chronic obstructive pulmonary disease (COPD) recommend that inhaled corticosteroids (ICS) are prescribed to patients with the most severe symptoms. However, these guidelines have not been widely implemented by physicians, leading to widespread use of ICS in patients with mild-to-moderate COPD. Of particular concern is the potential risk of worsening diabetic control associated with ICS use. Here we investigate whether ICS therapy in patients with COPD and comorbid type 2 diabetes mellitus (T2DM) has a negative impact on diabetic control, and whether these negative effects are dose-dependent. Methods and Findings This was a historical matched cohort study utilising primary care medical record data from two large UK databases. We selected patients aged >= 40 years with COPD and T2DM, prescribed ICS (n = 1360) or non-ICS therapy (n = 2642) between 2008 and 2012. The primary endpoint was change in HbA(1c) between the baseline and outcome periods. After 1:1 matching, each cohort consisted of 682 patients. Over the 12-18-month outcome period, patients prescribed ICS had significantly greater increases in HbA1c values compared with those prescribed non-ICS therapies; adjusted difference 0.16% (95% confidence interval [Cl]: 0.05-0.27%) in all COPD patients, and 0.25% (95% Cl: 0.10-0.40%) in mild-to-moderate COPD patients. Patients in the ICS cohort also had significantly more diabetes-related general practice visits per year and received more frequent glucose strip prescriptions, compared with those prescribed non-ICS therapies. Patients prescribed higher cumulative doses of ICS (> 250 mg) had greater odds of increased HbA(1c) and/or receiving additional antidiabetic medication, and increased odds of being above the Quality and Outcomes Framework (QOF) target for HbA1c levels, compared with those prescribed lower cumulative doses ( Conclusion For patients with COPD and comorbid T2DM, ICS therapy may have a negative impact on diabetes control. Patients prescribed higher cumulative doses of ICS may be at greater risk of diabetes progression

    Prerequisites for a dry powder inhaler for children with cystic fibrosis

    Get PDF
    Correct inhalation technique is essential for effective use of dry powder inhalers (DPIs), as their effectiveness largely depends on the patient's inhalation manoeuvre. Children are an especially challenging target population for DPI development due to the large variability in understanding and inspiratory capacities. We previously performed a study in which we determined the prerequisites for a paediatric DPI in a mostly healthy paediatric population, for which we used an empty test inhaler with variable internal airflow resistance and mouthpiece. In the current study we investigated what specifications are required for a DPI for children with cystic fibrosis (CF), for which we expanded on our previous findings. We recorded flow profiles of 35 children with CF (aged 4.7-14.7 years) at three airflow resistances (0.031-0.045 kPa0.5.min.L-1) from which various inspiratory parameters were computed. Obstructions in the mouth during inhalation were recorded with a sinuscope. All children were able to perform a correct inhalation manoeuvre, although video analysis showed that children did not place the inhaler correctly in the mouth in 17% of the cases. No effect was found of medium to high airflow resistance on total inhaled volume, which implies that the whole resistance range tested is suitable for children with CF aged 4-14 years. No effect could be established of either mouthpiece design or airflow resistance on the occurrence of obstructions in the mouth cavity. This study confirms our previous conclusion that the development of DPIs specifically for children is highly desired. Such a paediatric DPI should function well at 0.5 L inhaled volume and a peak inspiratory flow rate of 20 to 30 L/min, depending on the internal airflow resistance. This resistance can be increased up to 0.045 kPa0.5.min.L-1 (medium-high) to reduce oropharyngeal deposition. A higher resistance may be less favourable due to its compromising effect on PIF and thereby on the energy available for powder dispersion

    Clinical Effectiveness of Budesonide/Formoterol Fumarate Easyhaler(A (R)) for Patients with Poorly Controlled Obstructive Airway Disease: a Real-World Study of Patient-Reported Outcomes

    Get PDF
    The effectiveness of inhaled therapies can be influenced by many factors, including the type of inhaler, which may have clinical implications. We report a real-world, multicenter, open-label, non-randomized, non-interventional study conducted by 200 pulmonologists across 200 centers in Hungary. The effectiveness of budesonide/formoterol inhalation therapy in daily clinical practice, delivered via the Bufomix Easyhaler(A (R)), was evaluated in patients with asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO). Effectiveness was assessed after 12 weeks of treatment by spirometry, the Asthma Control Test, mini-Asthma Quality of Life Questionnaire, COPD Assessment Test and modified Medical Research Council dyspnea scale. Patient satisfaction with the Bufomix Easyhaler(A (R)) and physicians' assessments (ease of use and time taken to learn the technique) were also assessed. A total of 1498 patients with obstructive airway disease were evaluated (asthma: n = 621; COPD: n = 778; ACO: n = 99), of whom 455 (30.4%) were newly diagnosed inhaler-na 0.002) were reported after 12 weeks of Bufomix Easyhaler(A (R)) use. Improvements were observed in both inhaler-na 90.0% of physicians described the Bufomix Easyhaler(A (R)) as easy to teach; 73.8% and 98.9% of patients learned the technique within 5 and 10 min of teaching, respectively. Twelve weeks' treatment with the Bufomix Easyhaler(A (R)) resulted in significant improvements in disease control and quality of life. The Bufomix Easyhaler(A (R)) was considered easy to use, and most patients were satisfied with the inhaler. Results confirm the real-world effectiveness of the Bufomix Easyhaler(A (R)) in the treatment of adult outpatients with obstructive airway disease. Orion Corp., Orion Pharma
    corecore