104 research outputs found

    Stress and Strain in Flat Piling of Disks

    Full text link
    We have created a flat piling of disks in a numerical experiment using the Distinct Element Method (DEM) by depositing them under gravity. In the resulting pile, we then measured increments in stress and strain that were associated with a small decrease in gravity. We first describe the stress in terms of the strain using isotropic elasticity theory. Then, from a micro-mechanical view point, we calculate the relation between the stress and strain using the mean strain assumption. We compare the predicted values of Young's modulus and Poisson's ratio with those that were measured in the numerical experiment.Comment: 9 pages, 1 table, 8 figures, and 2 pages for captions of figure

    Arches and contact forces in a granular pile

    Get PDF
    Assemblies of granular particles mechanically stable under their own weight contain arches. These are structural units identified as sets of mutually stable grains. It is generally assumed that these arches shield the weight above them and should bear most of the stress in the system. We test such hypothesis by studying the stress born by in-arch and out-of-arch grains. We show that, indeed, particles in arches withstand larger stresses. In particular, the isotropic stress tends to be larger for in-arch-grains whereas the anisotropic component is marginally distinguishable between the two types of particles. The contact force distributions demonstrate that an exponential tail (compatible with the maximization of entropy under no extra constraints) is followed only by the out-of-arch contacts. In-arch contacts seem to be compatible with a Gaussian distribution consistent with a recently introduced approach that takes into account constraints imposed by the local force balance on grains.Comment: 7 pages, 7 figures, major revisio

    Transgenerational Effects of Stress Exposure on Offspring Phenotypes in Apomictic Dandelion

    Get PDF
    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects

    Density-Independent Mortality and Increasing Plant Diversity Are Associated with Differentiation of Taraxacum officinale into r- and K-Strategists

    Get PDF
    Background: Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. Methodology/Principal Findings: We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Conclusions/Significance: Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with the corresponding selection regimes was maintained during the 5-year experimental period

    Chemotactic Signaling in Sperm Cells

    No full text

    Coarse Grained Parallel Maximum Matching in Convex Bipartite Graphs

    No full text
    We present a coarse grained parallel algorithm for computing a maximum matching in a convex bipartite graph G = #A; B; E#.Forp processors with N=p memory per processor, N = jAj + jBj, N=p # p, the algorithm requires p ; log p# local computation, where n = jAj, m = jBj and T sequ #n; m# is the sequential time complexity for the problem. For the BSP model, this implies O#log p# supersteps log p# local computation

    Improving properties of THz photoconductors by bonding to a high thermal conductivity substrate

    No full text

    Diversity of parental environments increases phenotypic variation in Arabidopsis populations more than genetic diversity but similarly affects productivity

    No full text
    [Background and Aims] The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. [Methods} A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. [Key Results] Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. [Conclusions] A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.This work was supported by the Czech Science Foundation (GACR 20-00871S) and the Estonian Research Council (project PSG293 to C.P.C.) and the European Union through the European Regional Development Fund (Centre of Excellence EcolChange to C.P.C.).Peer reviewe
    • …
    corecore